Publications
2024
-
MANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts
Renchunzi Xie*, Ambroise Odonnat*, Vasilii Feofanov*, Weijian Deng, Jianfeng Zhang, Bo AnNeurIPS 2024
-
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
Romain Ilbert, Malik Tiomoko, Cosme Louart, Ambroise Odonnat, Vasilii Feofanov, Themis Palpanas, Ievgen RedkoNeurIPS 2024 (Spotlight)
-
Self-Training: A Survey
Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto, Lies Hadjadj, Emilie Devijver, Yury MaximovNeurocomputing
-
SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention
Romain Ilbert*, Ambroise Odonnat*, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Palpanas, Ievgen RedkoICML 2024 (Oral)
-
Multi-class Probabilistic Bounds for Majority Vote Classifiers with Partially Labeled Data
Vasilii Feofanov, Emilie Devijver, Massih-Reza AminiJMLR + ICML 2024 Presentation
-
Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias
Ambroise Odonnat, Vasilii Feofanov, Ievgen RedkoAISTATS 2024
2023
-
Random Matrix Analysis to Balance between Supervised and Unsupervised Learning under the Low Density Separation Assumption
Vasilii Feofanov*, Malik Tiomoko*, Aladin Virmaux*ICML 2023
2022
-
Wrapper Feature Selection with Partially Labeled Data
Vasilii Feofanov, Emilie Devijver, Massih-Reza AminiApplied Intelligence
2021
-
Learning with Partially Labeled Data for Multi-class Classification and Feature Selection
Vasilii FeofanovPhD Thesis
2019
-
Transductive Bounds for the Multi-class Majority Vote Classifier
Vasilii Feofanov, Emilie Devijver, Massih-Reza AminiAAAI 2019 (Oral)