

Random Matrix Analysis to Balance between Supervised and Unsupervised Learning

Vasilii Feofanov*, Malik Tiomoko*, Aladin Virmaux*

Huawei Paris Noah's Ark Lab firstname.lastname@huawei.com *equal contribution

CAp RFIAP 2024, July 2 Published in ICML 2023

Introduction

In some applications data acquisition is cheaper than labeling,

Binary Classification Problem

Introduction

And supervised learning is inefficient.

Binary Classification Problem

Feofanov, Tiomoko, Virmaux

Random Matrix Analysis to Balance between Supervised and Unsupervised Learning

1/13

Semi-supervised learning: learn with both few labeled and many unlabeled training examples.

Family of SSL Methods:

- Pseudo-labeling,
- Graph-based algorithms,
- Cluster-then-label,
- Unsupervised feature learning.

Low Density Separation

Range of possible supervised classifiers is vast: we need to make assumptions.

Binary Classification Problem

Low Density Separation

Low Density Separation (LDS) assumption: decision boundary is far away from dense regions of unlabeled data.

Binary Classification Problem

Pseudo-labeling

Implementation of LDS: push the boundary away from unlabeled data with high confident scores.

Binary Classification Classifier

Random Matrix Analysis to Balance between Supervised and Unsupervised Learning

We introduce the QLDS classifier defined by solving:

$$\underset{\omega}{\operatorname{argmin}} \underbrace{\frac{\alpha_{\ell}}{2} \sum_{i=1}^{n_{\ell}} \left(y_i - \frac{\omega^{\top} \mathbf{x}_i}{\sqrt{n}} \right)^2}_{\text{labeled loss}} - \underbrace{\frac{\alpha_u}{2} \sum_{i=n_{\ell}+1}^{n_{\ell}+n_u} \left(\frac{\omega^{\top} \mathbf{x}_i}{\sqrt{n}}\right)^2}_{\text{unlabeled LDS loss}} + \underbrace{\frac{\lambda}{2} \|\omega\|^2}_{\text{regularization}}$$

■ Linear classification: for x, output sign(ω^Tx);

We introduce the QLDS classifier defined by solving:

$$\underset{\omega}{\operatorname{argmin}} \underbrace{\frac{\alpha_{\ell}}{2} \sum_{i=1}^{n_{\ell}} \left(y_{i} - \frac{\omega^{\top} \mathbf{x}_{i}}{\sqrt{n}}\right)^{2}}_{|\text{abeled loss}} - \underbrace{\frac{\alpha_{u}}{2} \sum_{i=n_{\ell}+1}^{n_{\ell}+n_{u}} \left(\frac{\omega^{\top} \mathbf{x}_{i}}{\sqrt{n}}\right)^{2}}_{\text{unlabeled LDS loss}} + \underbrace{\frac{\lambda}{2} \|\omega\|^{2}}_{\text{regularization}}$$

- Linear classification: for \mathbf{x} , output sign($\omega^{\top} \mathbf{x}$);
- Square margin maximization;

We introduce the QLDS classifier defined by solving:

$$\underset{\omega}{\operatorname{argmin}} \underbrace{\frac{\alpha_{\ell}}{2} \sum_{i=1}^{n_{\ell}} \left(y_i - \frac{\omega^{\top} \mathbf{x}_i}{\sqrt{n}}\right)^2}_{\text{labeled loss}} - \underbrace{\frac{\alpha_u}{2} \sum_{i=n_{\ell}+1}^{n_{\ell}+n_u} \left(\frac{\omega^{\top} \mathbf{x}_i}{\sqrt{n}}\right)^2}_{\text{unlabeled LDS loss}} + \underbrace{\frac{\lambda}{2} \|\omega\|^2}_{\text{regularization}}$$

- Linear classification: for \mathbf{x} , output sign $(\boldsymbol{\omega}^{\top}\mathbf{x})$;
- Square margin maximization;
- Hyperparameters α_ℓ, α_u,
 λ to balance the components.

Difference between QLDS and Transductive SVM:

Quadratic loss instead of hinge loss;

Difference between QLDS and Transductive SVM:

- Quadratic loss instead of hinge loss;
- Margin squared (ω^Tx)² instead of |ω^Tx|, regularization instead of pseudo-labeling loss;

Difference between QLDS and Transductive SVM:

- Quadratic loss instead of hinge loss;
- Margin squared (ω^Tx)² instead of |ω^Tx|, regularization instead of pseudo-labeling loss;
- TSVM loss is non-convex and difficult to optimize, QLDS loss is convex and has a closed form solution;

Particular cases of QLDS are:

• $\alpha_u = 0 \Rightarrow$ Least-Square SVM (supervised regime);

6/13

Particular cases of QLDS are:

- $\alpha_u = 0 \Rightarrow$ Least-Square SVM (supervised regime);
- $\alpha_l \rightarrow 0 \Rightarrow$ Graph-based SSL (Mai, X. and Couillet, R., 2018);

Particular cases of QLDS are:

- $\alpha_u = 0 \Rightarrow$ Least-Square SVM (supervised regime);
- $\alpha_l \rightarrow 0 \Rightarrow$ Graph-based SSL (Mai, X. and Couillet, R., 2018);
- $\alpha_l \to 0$ and $\lambda \to \lambda_{\max}(\mathbf{X}_u) \Rightarrow$ Linear spectral clustering.

Research Questions

Problem: It is not safe since prediction can be wrong.

7/13

$$\frac{\alpha_{\ell}}{2} \sum_{i=1}^{n_{\ell}} \left(y_i - \frac{\omega^{\top} \mathbf{x}_i}{\sqrt{n}} \right)^2 - \frac{\alpha_u}{2} \sum_{i=n_{\ell}+1}^{n_{\ell}+n_u} \left(\frac{\omega^{\top} \mathbf{x}_i}{\sqrt{n}} \right)^2 + \frac{\lambda}{2} \|\boldsymbol{\omega}\|$$

Questions:

- 1 What are generalization guarantees of the classifier?
- 2 How to properly choose the hyperparameters?

• Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$;

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$;
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$;

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$;
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$;
- Large-dimensional: n, d are both large $(d = \mathcal{O}(n), (n, d) \rightarrow \infty)$.

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$;
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$;
- Large-dimensional: n, d are both large $(d = \mathcal{O}(n), (n, d) \rightarrow \infty)$.

Assumptions on data distribution:

Gaussian Mixture Model (GMM);

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$;
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$;
- Large-dimensional: n, d are both large $(d = \mathcal{O}(n), (n, d) \rightarrow \infty)$.

Assumptions on data distribution:

- Gaussian Mixture Model (GMM);
- Concentrated Data (Louart, C. and Couillet, R., 2018): variance of $\boldsymbol{\omega}^{\top} \mathbf{x}$ does not grow with dimension d,

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$;
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$;
- Large-dimensional: n, d are both large $(d = \mathcal{O}(n), (n, d) \rightarrow \infty)$.

Assumptions on data distribution:

- Gaussian Mixture Model (GMM);
- Concentrated Data (Louart, C. and Couillet, R., 2018): variance of $\omega^{\top} \mathbf{x}$ does not grow with dimension d, Particular cases:
 - Standard Gaussian distribution,
 - Lipschitz transformation of Gaussian (e.g., GAN images),
 - Open question: learned features by DNN?

Assumptions:

- **1** Large-dimensional regime $d = \mathcal{O}(n)$;
- 2 Concentrated data distribution: variance of $\boldsymbol{\omega}^{\top} \mathbf{x}$ does not grow with dimension d.

Theorem

Under the assumptions, we have:

- ω^Tx|y=-1 and ω^Tx|y=+1 are asymptotically normally distributed with known parameters;
- Classification error is explicitly evaluated;

 The classification problem concentrates into two-dimensional sufficient statistics.

Sketch of Proof.

- CLT: if x is a concentrated random vector, then $\omega^{\top} x$ is asymptotically Gaussian,
- Following Marchenko, V. A. and Pastur, L. A. (1967), for each class C_j , we compute:

$$\begin{split} & \mathbb{E}_{\mathbf{X}_{\ell},\mathbf{X}_{u}}\left[\left(\boldsymbol{\omega}^{*}(\mathbf{X}_{\ell},\mathbf{X}_{u})\right)^{\top}\mathbf{x}\Big|\mathbf{x}\in\mathcal{C}_{j}\right],\\ & \mathsf{Var}_{\mathbf{X}_{\ell},\mathbf{X}_{u}}\left[\left(\boldsymbol{\omega}^{*}(\mathbf{X}_{\ell},\mathbf{X}_{u})\right)^{\top}\mathbf{x}\Big|\mathbf{x}\in\mathcal{C}_{j}\right]. \end{split}$$

Sketch of Proof.

- CLT: if x is a concentrated random vector, then $\omega^{\top} x$ is asymptotically Gaussian,
- Following Marchenko, V. A. and Pastur, L. A. (1967), for each class C_j , we compute:

$$\begin{split} & \mathbb{E}_{\mathbf{X}_{\ell},\mathbf{X}_{u}}\left[\left(\boldsymbol{\omega}^{*}(\mathbf{X}_{\ell},\mathbf{X}_{u})\right)^{\top}\mathbf{x}\middle|\mathbf{x}\in\mathcal{C}_{j}\right],\\ & \mathsf{Var}_{\mathbf{X}_{\ell},\mathbf{X}_{u}}\left[\left(\boldsymbol{\omega}^{*}(\mathbf{X}_{\ell},\mathbf{X}_{u})\right)^{\top}\mathbf{x}\middle|\mathbf{x}\in\mathcal{C}_{j}\right]. \end{split}$$

- In the final expression, some quantities depend on class mean and covariance and need to be estimated from data.
 - For example, [μ₋₁, μ₊₁][⊤][μ₋₁, μ₊₁] is better to estimate directly rather than estimating μ₋₁, μ₊₁ separately.

Illustration of Theorem

- Theory can fit the empirical distribution of $\boldsymbol{\omega}^{\top} \mathbf{x}$.
- The theoretical expression can be viewed as a function of different variables: $n_{\ell}, \alpha_l, \alpha_u$, etc.

Application to Model Selection

Find α_{ℓ} and α_{u} automatically based on asymptotic error given by Theorem.

- Find α_{ℓ} and α_{u} automatically based on asymptotic error given by Theorem.
- Experimental results showed that

Data set	Baselines		Model Selection	
	QLDS (1,0) (LS-SVM)	QLDS(0,1) (Graph SSL)	QLDS (cv)	QLDS (th)
books	$37.47^{\downarrow}\pm2.25$	26.47 ± 0.72	27.91 ± 3.32	$\textbf{26.03} \pm 0.79$
dvd	$38.33^{\downarrow} \pm 1.72$	29.12 ± 1.35	29.53 ± 3.48	$\textbf{28.53} \pm 1.33$
electronics	$34.15^{\downarrow}\pm3.25$	19.4 ± 0.29	$20.1^{\downarrow} \pm 1.03$	$\textbf{19.41} \pm 0.46$
kitchen	$32.39^{\downarrow}\pm3.02$	19.31 ± 0.16	$19.98^{\downarrow}\pm2.28$	$\textbf{19.11} \pm 0.32$
splice	$39.81^{\downarrow}\pm2.93$	35.48 ± 0.86	37.02 ± 3.04	$\textbf{35.35} \pm 1.26$
adult	33.35 ± 0.68	$36.28^{\downarrow}\pm0.06$	$\textbf{32.25} \pm 1.92$	32.88 ± 2.46
mushrooms	$6.55^{\downarrow}\pm2.07$	$11.33^{\downarrow}\pm0.04$	$\textbf{2.57} \pm 1.86$	$8.49^{\downarrow}\pm3.63$

- Find α_{ℓ} and α_{u} automatically based on asymptotic error given by Theorem.
- Experimental results showed that

Data set	Baselines		Model Selection	
	QLDS(1,0) (LS-SVM)	QLDS(0,1) (Graph SSL)	QLDS (cv)	QLDS (th)
books	$37.47^{\downarrow}\pm2.25$	26.47 ± 0.72	27.91 ± 3.32	$\textbf{26.03} \pm 0.79$
dvd	$38.33^{\downarrow} \pm 1.72$	29.12 ± 1.35	29.53 ± 3.48	$\textbf{28.53} \pm 1.33$
electronics	$34.15^{\downarrow}\pm3.25$	19.4 ± 0.29	$20.1^{\downarrow}\pm1.03$	$\textbf{19.41} \pm 0.46$
kitchen	$32.39^{\downarrow}\pm3.02$	19.31 ± 0.16	$19.98^{\downarrow}\pm2.28$	$\textbf{19.11} \pm 0.32$
splice	$39.81^{\downarrow}\pm2.93$	35.48 ± 0.86	37.02 ± 3.04	$\textbf{35.35} \pm 1.26$
adult	33.35 ± 0.68	$36.28^{\downarrow}\pm0.06$	$\textbf{32.25} \pm 1.92$	32.88 ± 2.46
mushrooms	$6.55^{\downarrow} \pm 2.07$	$11.33^{\downarrow}\pm0.04$	$\textbf{2.57} \pm 1.86$	$8.49^{\downarrow} \pm 3.63$

Model selection outperforms both LS-SVM and Graph-based SSL;

- Find α_{ℓ} and α_{u} automatically based on asymptotic error given by Theorem.
- Experimental results showed that

Data set	Baselines		Model Selection	
	QLDS (1,0) (LS-SVM)	QLDS(0,1) (Graph SSL)	QLDS (cv)	QLDS (th)
books	$37.47^{\downarrow}\pm2.25$	26.47 ± 0.72	27.91 ± 3.32	$\textbf{26.03} \pm 0.79$
dvd	$38.33^{\downarrow}\pm1.72$	29.12 ± 1.35	29.53 ± 3.48	$\textbf{28.53} \pm 1.33$
electronics	$34.15^{\downarrow}\pm3.25$	19.4 ± 0.29	$20.1^{\downarrow}\pm1.03$	$\textbf{19.41} \pm 0.46$
kitchen	$32.39^{\downarrow}\pm3.02$	19.31 ± 0.16	$19.98^{\downarrow}\pm2.28$	$\textbf{19.11} \pm 0.32$
splice	$39.81^{\downarrow}\pm2.93$	35.48 ± 0.86	37.02 ± 3.04	$\textbf{35.35} \pm 1.26$
adult	33.35 ± 0.68	$36.28^{\downarrow}\pm0.06$	$\textbf{32.25} \pm 1.92$	32.88 ± 2.46
mushrooms	$6.55^{\downarrow}\pm2.07$	$11.33^{\downarrow}\pm0.04$	$\textbf{2.57} \pm 1.86$	$8.49^{\downarrow} \pm 3.63$

- Model selection outperforms both LS-SVM and Graph-based SSL;
- Selecting α_{ℓ} and α_u by cross-validation is more costly and can lead to over-confidence towards labeled data.

Thanks for your attention !