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Introduction

In some applications data acquisition is cheaper than labeling,

Binary Classification Problem
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Introduction

And supervised learning is inefficient.

Binary Classification Problem

@ labeled class 0 unlabeled
A\ labeled class 1
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Introduction

Semi-supervised learning: learn
unlabeled training examples.

Family of SSL Methods:
m Pseudo-labeling,
m Graph-based algorithms,
m Cluster-then-label,

m Unsupervised feature
learning.

with both few labeled and many

Binary Classification Problem

@ labeled class 0 unlabeled
A labeled class 1
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Low Density Separation

Range of possible supervised classifiers is vast: we need to make
assumptions.

Binary Classification Problem
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Low Density Separation

Low Density Separation (LDS) assumption: decision boundary is
far away from dense regions of unlabeled data.

Binary Classification Problem
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Pseudo-labeling

Implementation of LDS: push the boundary away from unlabeled
data with high confident scores.

Binary Classification Classifier

6 -
4 -
2 B
0 B
-2 1
-4 -3 -2 -1 0 1 2 3 4
unlabeled A labeled class 1

@ labeled class 0

Feofanov, Tiomoko, Virmaux Random Matrix Analysis to Balance between Supervised and Unsupervised Learning



QLDS Classifier

We introduce the QLDS classifier defined by solving:
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labeled loss unlabeled LDS loss regularization

Binary Classification Problem

m Linear classification:

for x, output sign(wT

X);

@ labeled class 0 unlabeled
A labeled class 1 desired boundary's range
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QLDS Classifier

We introduce the QLDS classifier defined by solving:

v & wTx 2 ay, LR fwTx 2 A
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=1 i=ng+1
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labeled loss unlabeled LDS loss regularization

Binary Classification Problem

m Linear classification:

for x, output sign(wT

X);

m Square margin maximization; .

@ labeled class 0 unlabeled
A labeled class 1 desired boundary's range
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QLDS Classifier

We introduce the QLDS classifier defined by solving:

R wIx 2 a, MR 0T\ A
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labeled loss unlabeled LDS loss regularization

Binary Classification Problem

m Linear classification:

for x, output sign(wT

X);
m Square margin maximization; .

m Hyperparameters oy, oy, 0
A to balance the components. -

@ labeled class 0 unlabeled
A labeled class 1 desired boundary's range
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QLDS vs TSVM
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labeled loss unlabeled LDS loss regularization

Difference between QLDS and Transductive SVM:

m Quadratic loss instead of hinge loss;
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QLDS vs TSVM

Qy Zne WwTx\ « WZ—M" Wi\’ A
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i=1 i=n,+1

N——

labeled loss unlabeled LDS loss regularization

Difference between QLDS and Transductive SVM:
m Quadratic loss instead of hinge loss;

m Margin squared (w'x)? instead of |w x|, regularization
instead of pseudo-labeling loss;
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QLDS vs TSVM
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labeled loss unlabeled LDS loss regularization

Difference between QLDS and Transductive SVM:
m Quadratic loss instead of hinge loss;
= Margin squared (w'x)? instead of |w' x|, regularization
instead of pseudo-labeling loss;

m TSVM loss is non-convex and difficult to optimize, QLDS loss
is convex and has a closed form solution;
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Particular Cases of QLDS

n 2 Ng+nay, 2
argmin 203 (- ¢ X) QS (WA
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labeled loss unlabeled LDS loss regularization

Particular cases of QLDS are:

m o, = 0 = Least-Square SVM (supervised regime);
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Particular Cases of QLDS
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Particular cases of QLDS are:
m o, = 0 = Least-Square SVM (supervised regime);
m oy — 0 = Graph-based SSL (Mai, X. and Couillet, R., 2018);

Feofanov, Tiomoko, Virmaux Random Matrix Analysis to Balance between Supervised and Unsupervised Learning



Particular Cases of QLDS

p Wik \ 2 oy MR rwTx 2 A
min — E Lz _u E i -z 2
argw m 2 <yZ \/ﬁ > 2 < \/ﬁ > * 2||w”

i=1 i=n,+1

N——

labelgzl loss unlabeled LDS loss regularization

Particular cases of QLDS are:
m o, = 0 = Least-Square SVM (supervised regime);
m oy — 0 = Graph-based SSL (Mai, X. and Couillet, R., 2018);
m a; — 0and A — Apax(Xy) = Linear spectral clustering.
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Research Questions

Problem: It is not safe since prediction can be wrong.

Binary Classification Classifier
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Research Questions

Binary Classification Classifier

Problem: It is not safe since predic-
tion can be wrong.
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Questions:
What are generalization guarantees of the classifier?

How to properly choose the hyperparameters?
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Random Matrix Analysis

Three types of asymptotic analysis:
m Traditional: d is fixed, n is large (n > d,n— o0);
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Random Matrix Analysis

Three types of asymptotic analysis:
m Traditional: d is fixed, n is large (n > d,n— o0);
m Small-data: n is small, d is large, (n < d, d— 00);

Feofanov, Tiomoko, Virmaux Random Matrix Analysis to Balance between Supervised and Unsupervised Learning



Random Matrix Analysis

Three types of asymptotic analysis:
m Traditional: d is fixed, n is large (n > d,n— o0);
m Small-data: n is small, d is large, (n < d, d— 00);
m Large-dimensional: n,d are both large (d=0(n), (n,d)— 00).
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Random Matrix Analysis

Three types of asymptotic analysis:
m Traditional: d is fixed, n is large (n > d,n— o0);
m Small-data: n is small, d is large, (n < d, d— 00);
m Large-dimensional: n,d are both large (d=0(n), (n,d)— 00).

Assumptions on data distribution:
m Gaussian Mixture Model (GMM);
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Random Matrix Analysis

Three types of asymptotic analysis:
m Traditional: d is fixed, n is large (n > d,n— o0);
m Small-data: n is small, d is large, (n < d, d— 00);
m Large-dimensional: n,d are both large (d=0(n), (n,d)— 00).

Assumptions on data distribution:
m Gaussian Mixture Model (GMM);

m Concentrated Data (Louart, C. and Couillet, R., 2018): variance of
w "x does not grow with dimension d,
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Random Matrix Analysis

Three types of asymptotic analysis:
m Traditional: d is fixed, n is large (n > d,n— o0);
m Small-data: n is small, d is large, (n < d, d— 00);
m Large-dimensional: n,d are both large (d=0(n), (n,d)— 00).

Assumptions on data distribution:
m Gaussian Mixture Model (GMM);

m Concentrated Data (Louart, C. and Couillet, R., 2018): variance of
w "x does not grow with dimension d,
Particular cases:
e Standard Gaussian distribution,
e Lipschitz transformation of Gaussian (e.g., GAN images),
e Open question: learned features by DNN?
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Random Matrix Theorem

Assumptions:
Large-dimensional regime d = O(n);

Concentrated data distribution: variance of w ' x does not
grow with dimension d.

Under the assumptions, we have:

—cy (Th)
—_— e (Th)
=3 & (Emp)
= G (Emp)

mw' x|y=—1and w'x|y=+1 s
are asymptotically normally
distributed with known parameters;

m Classification error is explicitly ol .
evaluated; -0.10 —0.05 0.00 005 010

Decision function g(x)

m The classification problem concentrates into two-dimensional
sufficient statistics.
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Comments on Theorem

m Sketch of Proof.
e CLT: if x is a concentrated random vector, then w
asymptotically Gaussian,
e Following Marchenko, V. A. and Pastur, L. A. (1967), for each
class C;, we compute:

Tx is

Ex, x, [(@ (Xe X)) x[x e 0]

Varx, x, [(w*(Xg7Xu))T x‘x € Cj} .
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Comments on Theorem

m Sketch of Proof.
e CLT: if x is a concentrated random vector, then w
asymptotically Gaussian,
e Following Marchenko, V. A. and Pastur, L. A. (1967), for each
class C;, we compute:

Tx is

Ex, x, [(@ (Xe X)) x[x e 0]

Varx, x, [(w*(Xg7Xu))T x‘x € Cj} .

m In the final expression, some quantities depend on class mean
and covariance and need to be estimated from data.
e For example, [11_1,p41] " [1—1, py1] is better to estimate
directly rather than estimating p—1, 141 separately.
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[llustration of Theorem
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Distribution.

» Theory can fit the empirical distribution of w ' x.

m The theoretical expression can be viewed as a function of
different variables: ny, oy, oy, etc.
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Application to Model Selection S'Q

m Find ay and «,, automatically based on asymptotic error given
by Theorem.
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Application to Model Selection

m Find ay and «,, automatically based on asymptotic error given

by Theorem.
m Experimental results showed that
Baselines Model Selection
Data set
books 37.47% £ 225 26.47 + 072 27.91 +3.32 26.03 + 0.79
dvd 38.33% + 1.72 29.12 + 1.35 29.53 + 3.48 28.53 + 1.33

electronics 34.15% + 325 194+ 029 20.1v +1.03 19.41 + 0.46
kitchen 32.39¢ +3.02 19.31 +0.16 19.98% + 2.28 19.11 + 0.32
splice 39.81¢ + 293 3548 + 0.86 37.02 + 3.04 35.35 +1.26
adult 33.35 + 0.68 36.28% + 0.06 32.25 + 1.92 32.88 + 2.46
mushrooms  6.55% 4+ 2.07 11.33 4+ 0.04 2.57 + 1.86 8.49' + 3.63
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Application to Model Selection

m Find ay and «,, automatically based on asymptotic error given

by Theorem.
m Experimental results showed that
Baselines Model Selection
Data set
books 37.47% £ 225 26.47 + 072 27.91 +3.32 26.03 + 0.79
dvd 38.33% + 1.72 29.12 + 1.35 29.53 + 3.48 28.53 + 1.33

electronics 34.15% + 325 194+ 029 20.1v +1.03 19.41 + 0.46
kitchen 32.39¢ +3.02 19.31 +0.16 19.98% + 2.28 19.11 + 0.32
splice 39.81¢ + 293 3548 + 0.86 37.02 + 3.04 35.35 +1.26
adult 33.35 + 0.68 36.28% + 0.06 32.25 + 1.92 32.88 + 2.46
mushrooms  6.55% 4+ 2.07 11.33 4+ 0.04 2.57 + 1.86 8.49' + 3.63

e Model selection outperforms both LS-SVM and Graph-based
SSL;
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Application to Model Selection

m Find ay and «,, automatically based on asymptotic error given

by Theorem.
m Experimental results showed that
Baselines Model Selection
Data set
books 37.47% £ 225 26.47 + 072 27.91 +3.32 26.03 + 0.79
dvd 38.33% + 1.72 29.12 + 1.35 29.53 + 3.48 28.53 + 1.33

electronics 34.15% + 325 194+ 029 20.1v +1.03 19.41 + 0.46
kitchen 32.39¢ +3.02 19.31 +0.16 19.98% + 2.28 19.11 + 0.32
splice 39.81¢ + 293 3548 + 0.86 37.02 + 3.04 35.35 +1.26
adult 33.35 + 0.68 36.28% + 0.06 32.25 + 1.92 32.88 + 2.46
mushrooms  6.55% 4+ 2.07 11.33 4+ 0.04 2.57 + 1.86 8.49' + 3.63

e Model selection outperforms both LS-SVM and Graph-based
SSL;

e Selecting oy and «, by cross-validation is more costly and can
lead to over-confidence towards labeled data.
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Thanks for your attention !
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