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Introduction

In some applications data acquisition is cheaper than labeling,
blablabla
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Introduction

And supervised learning is inefficient.
blablabla
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Introduction

Semi-supervised learning: learn with both few labeled and many
unlabeled training examples.

Family of SSL Methods:

Pseudo-labeling,

Graph-based algorithms,

Cluster-then-label,

Unsupervised feature
learning.
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Low Density Separation

Range of possible supervised classifiers is vast: we need to make
assumptions.
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Low Density Separation

Low Density Separation (LDS) assumption: decision boundary is
far away from dense regions of unlabeled data.
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Pseudo-labeling

Implementation of LDS: push the boundary away from unlabeled
data with high confident scores.
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QLDS Classifier

We introduce the QLDS classifier defined by solving:

argmin
ω

α`
2

n∑̀
i=1

(
yi −

ω>xi√
n

)2

︸ ︷︷ ︸
labeled loss

− αu
2

n`+nu∑
i=n`+1

(
ω>xi√
n

)2

︸ ︷︷ ︸
unlabeled LDS loss

+
λ

2
‖ω‖2︸ ︷︷ ︸

regularization
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Linear classification:
for x, output sign(ω>x);

1 Square margin maximization;

1 Hyperparameters α`, αu,
λ to balance the components.
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QLDS vs TSVM

argmin
ω

α`
2

n∑̀
i=1

(
yi −

ω>xi√
n

)2

︸ ︷︷ ︸
labeled loss

− αu
2

n`+nu∑
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(
ω>xi√
n

)2
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unlabeled LDS loss

+
λ

2
‖ω‖2︸ ︷︷ ︸

regularization

Difference between QLDS and Transductive SVM:

Quadratic loss instead of hinge loss;

1 Margin squared (ω>x)2 instead of |ω>x|, regularization
instead of pseudo-labeling loss;

1 TSVM loss is non-convex and difficult to optimize, QLDS loss
is convex and has a closed form solution;
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Particular Cases of QLDS

argmin
ω

α`
2

n∑̀
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(
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Particular cases of QLDS are:

αu = 0⇒ Least-Square SVM (supervised regime);

αl → 0⇒ Graph-based SSL (Mai, X. and Couillet, R., 2018);

αl → 0 and λ→ λmax(Xu)⇒ Linear spectral clustering.
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Research Questions

Problem: It is not safe since prediction can be wrong.
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Questions:

1 What are generalization guarantees of the classifier?

2 How to properly choose the hyperparameters?
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Random Matrix Analysis

Three types of asymptotic analysis:

Traditional: d is fixed, n is large (n� d, n→∞);

Small-data: n is small, d is large, (n� d, d→∞);

Large-dimensional: n, d are both large (d=O(n), (n, d)→∞).

Assumptions on data distribution:

Gaussian Mixture Model (GMM);

Concentrated Data (Louart, C. and Couillet, R., 2018): variance of
ω>x does not grow with dimension d,
Particular cases:

Standard Gaussian distribution,
Lipschitz transformation of Gaussian (e.g., GAN images),
Open question: learned features by DNN?
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Random Matrix Theorem

Assumptions:

1 Large-dimensional regime d = O(n);
2 Concentrated data distribution: variance of ω>x does not

grow with dimension d.

Theorem

Under the assumptions, we have:

ω>x|y=−1 and ω>x|y=+1
are asymptotically normally
distributed with known parameters;

Classification error is explicitly
evaluated;

The classification problem concentrates into two-dimensional
sufficient statistics.
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Comments on Theorem

Sketch of Proof.

CLT: if x is a concentrated random vector, then ω>x is
asymptotically Gaussian,
Following Marchenko, V. A. and Pastur, L. A. (1967), for each
class Cj , we compute:

EX`,Xu

[
(ω∗(X`,Xu))

>
x
∣∣∣x ∈ Cj] ,

VarX`,Xu

[
(ω∗(X`,Xu))

>
x
∣∣∣x ∈ Cj] .

In the final expression, some quantities depend on class mean
and covariance and need to be estimated from data.

For example, [µ−1, µ+1]
>[µ−1, µ+1] is better to estimate

directly rather than estimating µ−1, µ+1 separately.
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Illustration of Theorem

(a) Theoretical vs Empirical
Distribution.

(b) Utility of Unlabeled Data.

Theory can fit the empirical distribution of ω>x.

The theoretical expression can be viewed as a function of
different variables: n`, αl, αu, etc.
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Application to Model Selection

Find α` and αu automatically based on asymptotic error given
by Theorem.

Experimental results showed that

Data set
Baselines Model Selection

QLDS (1,0) QLDS (0,1)
QLDS (cv) QLDS (th)

(LS-SVM) (Graph SSL)

books 37.47↓ ± 2.25 26.47 ± 0.72 27.91 ± 3.32 26.03 ± 0.79
dvd 38.33↓ ± 1.72 29.12 ± 1.35 29.53 ± 3.48 28.53 ± 1.33
electronics 34.15↓ ± 3.25 19.4 ± 0.29 20.1↓ ± 1.03 19.41 ± 0.46
kitchen 32.39↓ ± 3.02 19.31 ± 0.16 19.98↓ ± 2.28 19.11 ± 0.32
splice 39.81↓ ± 2.93 35.48 ± 0.86 37.02 ± 3.04 35.35 ± 1.26
adult 33.35 ± 0.68 36.28↓ ± 0.06 32.25 ± 1.92 32.88 ± 2.46
mushrooms 6.55↓ ± 2.07 11.33↓ ± 0.04 2.57 ± 1.86 8.49↓ ± 3.63

Model selection outperforms both LS-SVM and Graph-based
SSL;
Selecting α` and αu by cross-validation is more costly and can
lead to over-confidence towards labeled data.
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Thanks for your attention !
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