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Introduction

In some applications data acquisition is cheaper than labeling,
blablabla
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Introduction

And supervised learning is inefficient.
blablabla
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Introduction

Semi-supervised learning: learn with both few labeled and many
unlabeled training examples.

Family of SSL Methods:

Pseudo-labeling,

Graph-based algorithms,

Cluster-then-label,

Unsupervised feature
learning.
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Self-training

Start from a supervised classifier trained on the labeled set.
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Self-training

Predict labels and confidence scores for unlabeled data.
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Self-training

Pseudo-label most confident data and include to the labeled set.
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Self-training

Retrain the model and repeat the same procedure again.
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Self-training

And again. . .
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Self-training

Until there are no data to pseudo-label.
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Self-training

Self-training pushed the boundary away from the confident data
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Two Fundamental Questions

1 Confidence Estimation → How to rank unlabeled data?

2 Pseudo-Labeling Policy → How to selected unlabeled data for
pseudo-labeling at each iteration?

Questions 2 has been studied a lot (Amini et al., 2022).

In this work, we focus on Confidence Estimation.

Biased prediction confidence ⇒
wrong direction can be chosen.
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Sample Selection Bias

Confidence can be biased when labeled and unlabeled data are
not i.i.d.

Sample Selection Bias(SSB): data labeling subject to
constraints

Creation of group study in clinical trials;

People with poor mobility less likely to be in street surveys;

Labeling can be constrained for privacy reasons.

Studied (Zadrozny, 2004) but not in the case of SSL.
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SSL under Sample Selection Bias

We consider SSL + SSB:

1 Few labeled examples (SSL)

2 Biased labeling procedure (SSB)

Real Data

i.i.d. SSL SSL + SSB

Goal → obtain a method good on both i.i.d. SSL and SSL + SSB.
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Implementation of SSL + SSB

We select labeled data in biased manner by modeling
si ∈ {0, 1} with P(si|xi, yi = k).

PCA-Bias algorithm:
1 Apply PCA on training data from class k;
2 Compute PC1(xi);
3 P(si = 1|xi, yi = k) ∝ exp(r · |PC1(xi)|), r > 0.
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Failure of Self-training under SSL+SSB

Base Classifier:

ERM: (MLP) learned on the labeled set;

Self-training Policies:

PLθ=0.95: fixed threshold θ (Lee et al., 2013);

CSTA∆=0.4: ∆% most confident (Cascante-Bonilla et al., 2021);

MSTA: trade-off between the estimated error and amount of

pseudo-labeling (Feofanov et al., 2019).
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Overconfidence of Softmax

Confidence estimation = ranking from easy to hard.

Softmax-based confidence is unreliable:

Overconfident;

Biased towards the
labeled set.
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Architecture

projection
layers

supervised
head

head 

head 

Backward Propagation

Forward Propagation Labeled Data

Unlabeled Data

Projection layers are learned through a classification head;

Confidence estimator is ensemble of M=5 linear heads that
don’t affect representation.
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Leveraging Ensemble Diversity

Softmax Proposed -similarity
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min
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M

∑
h∈T

 1

n`

∑
(x,y)∈X`×y`

`(h(x), y)


︸ ︷︷ ︸

supervised loss

+
γ

nuM(M−1)

∑
h 6=h̃∈T

∑
x∈Xu

h(x)>h̃(x)

︸ ︷︷ ︸
agreement loss

We jointly train ensemble

1 To fit very well the labeled data

1 And disagree as much possible on unlabeled data,
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T -similarity

We define the T -similarity as:

sT (x) =
1

M(M − 1)

∑
h6=h̃∈T

h(x)>h̃(x).

For any x, we have 0 ≤ sT (x) ≤ 1.
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Binary Linear Case

Consider binary linear classification: W = {wm∈Rd|1≤m≤M}.

argmin
W∈Rd×M

L(W) :=
1

M

M∑
m=1

1

n`

n∑̀
i=1

(
yi − ω>

mxi

)2
︸ ︷︷ ︸

label fidelity term

+
1

M

M∑
m=1

λm‖ωm‖2︸ ︷︷ ︸
regularization

+
γ

M(M − 1)

∑
m6=k

1

nu

n`+nu∑
i=n`+1

w>
mxiw

>
k xi︸ ︷︷ ︸

agreement term

Under the assumption

∀m ∈ J1,MK, λm >
γ(M + 1)

nu(M − 1)
λmax(X

>
uXu)

We proved that L is continuous, strictly convex and coercive, so the
problem admits a unique solution.
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Diversity of an Ensemble

Ensemble diversity:

`div(W,Xu) = −
1

nuM(M − 1)

∑
m 6=k

ω>mX
>
uXuωk.

Theorem (Connection b/w optimal loss and cov. matrix of X`)

`div(W
∗,Xu) is lower-bounded as follows:

γ`div(W
∗,Xu) ≥

1

2M

(
λ+

1

n`
λmin

(
X>` X`

))
‖W∗‖2F.

Optimal diversity is determined by variance within labeled
data.

Theorem shows importance of representation learning.

Odonnat, Feofanov, Redko Leveraging Ensemble Diversity for Robust Self-Training



13/15

Diversity of an Ensemble

Ensemble diversity:

`div(W,Xu) = −
1

nuM(M − 1)

∑
m 6=k

ω>mX
>
uXuωk.

Theorem (Connection b/w optimal loss and cov. matrix of X`)

`div(W
∗,Xu) is lower-bounded as follows:

γ`div(W
∗,Xu) ≥

1

2M

(
λ+

1

n`
λmin

(
X>` X`

))
‖W∗‖2F.

Optimal diversity is determined by variance within labeled
data.

Theorem shows importance of representation learning.

Odonnat, Feofanov, Redko Leveraging Ensemble Diversity for Robust Self-Training



13/15

Diversity of an Ensemble

Ensemble diversity:

`div(W,Xu) = −
1

nuM(M − 1)

∑
m 6=k

ω>mX
>
uXuωk.

Theorem (Connection b/w optimal loss and cov. matrix of X`)

`div(W
∗,Xu) is lower-bounded as follows:

γ`div(W
∗,Xu) ≥

1

2M

(
λ+

1

n`
λmin

(
X>` X`

))
‖W∗‖2F.

Optimal diversity is determined by variance within labeled
data.

Theorem shows importance of representation learning.

Odonnat, Feofanov, Redko Leveraging Ensemble Diversity for Robust Self-Training



13/15

Diversity of an Ensemble

Ensemble diversity:

`div(W,Xu) = −
1

nuM(M − 1)

∑
m 6=k

ω>mX
>
uXuωk.

Theorem (Connection b/w optimal loss and cov. matrix of X`)

`div(W
∗,Xu) is lower-bounded as follows:

γ`div(W
∗,Xu) ≥

1

2M

(
λ+

1

n`
λmin

(
X>` X`

))
‖W∗‖2F.

Optimal diversity is determined by variance within labeled
data.

Theorem shows importance of representation learning.

Odonnat, Feofanov, Redko Leveraging Ensemble Diversity for Robust Self-Training



14/15

Performance Results in SSL+SSB

Dataset ERM
PLθ=0.8 CSTA∆=0.4 MSTA

softmax T -similarity softmax T -similarity softmax T -similarity

Cod-RNA 74.51± 8.86 74.75± 8.14 80.06± 3.55 73.39± 7.36 78.39± 4.66 75.28± 8.79 76.88± 7.67
COIL-20 84.54± 2.19 84.69± 3.56 84.57± 2.85 84.38± 3.05 84.57± 3.16 84.32± 2.34 84.07± 2.85
Digits 75.68± 4.59 80.47± 3.8 78.2± 3.34 78.4± 3.28 79.14± 3.5 78.02± 5.15 79.8± 5.92
DNA 78.82± 2.31 80.29± 2.24 79.06± 2.31 80.12± 2.08 80.76± 2.24 80.89± 2.64 84.09± 1.7
DryBean 64.6± 3.89 65.6± 4.18 61.55± 4.91 64.91± 3.72 64.6± 3.53 66.24± 4.31 67.0± 3.96
HAR 82.57± 1.96 82.87± 3.02 83.12± 2.27 82.19± 2.61 83.53± 3.77 81.35± 2.54 81.16± 1.63
Mnist 50.74± 2.25 51.08± 2.55 52.69± 2.42 51.7± 3.52 54.26± 1.82 51.6± 2.58 54.18± 2.34
Mushrooms 69.45± 7.29 59.53± 10.46 71.36± 6.63 62.98± 7.25 77.55± 7.65 72.16± 7.59 76.16± 13.04
Phishing 67.42± 3.55 66.08± 5.66 77.41± 3.93 66.88± 5.64 76.17± 8.58 69.48± 4.37 75.83± 7.52
Protein 57.57± 6.33 57.45± 6.36 57.61± 6.23 56.09± 5.61 57.74± 7.8 58.81± 6.54 59.88± 6.29
Rice 79.19± 5.12 80.54± 4.31 81.1± 4.28 79.88± 4.48 81.56± 3.61 80.35± 4.89 82.63± 5.63
Splice 66.13± 4.47 67.14± 2.62 67.45± 2.53 67.28± 2.07 68.05± 2.17 66.08± 4.98 66.32± 4.73
Svmguide1 70.89± 10.98 70.35± 11.74 81.07± 5.39 69.84± 11.06 74.46± 7.23 71.04± 11.11 73.13± 8.82

T -similarity is better overall;

1 Mushrooms and Phishing: from degradation to
improvement.

1 Mushrooms and Phishing: from degradation to improvement.
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1 Mushrooms and Phishing: from degradation to improvement.

Odonnat, Feofanov, Redko Leveraging Ensemble Diversity for Robust Self-Training
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Performance Results in SSL+SSB

Dataset ERM
PLθ=0.8 CSTA∆=0.4 MSTA

softmax T -similarity softmax T -similarity softmax T -similarity

Cod-RNA 74.51± 8.86 74.75± 8.14 80.06± 3.55 73.39± 7.36 78.39± 4.66 75.28± 8.79 76.88± 7.67
COIL-20 84.54± 2.19 84.69± 3.56 84.57± 2.85 84.38± 3.05 84.57± 3.16 84.32± 2.34 84.07± 2.85
Digits 75.68± 4.59 80.47± 3.8 78.2± 3.34 78.4± 3.28 79.14± 3.5 78.02± 5.15 79.8± 5.92
DNA 78.82± 2.31 80.29± 2.24 79.06± 2.31 80.12± 2.08 80.76± 2.24 80.89± 2.64 84.09± 1.7
DryBean 64.6± 3.89 65.6± 4.18 61.55± 4.91 64.91± 3.72 64.6± 3.53 66.24± 4.31 67.0± 3.96
HAR 82.57± 1.96 82.87± 3.02 83.12± 2.27 82.19± 2.61 83.53± 3.77 81.35± 2.54 81.16± 1.63
Mnist 50.74± 2.25 51.08± 2.55 52.69± 2.42 51.7± 3.52 54.26± 1.82 51.6± 2.58 54.18± 2.34
Mushrooms 69.45± 7.29 59.53± 10.46 71.36± 6.63 62.98± 7.25 77.55± 7.65 72.16± 7.59 76.16± 13.04
Phishing 67.42± 3.55 66.08± 5.66 77.41± 3.93 66.88± 5.64 76.17± 8.58 69.48± 4.37 75.83± 7.52
Protein 57.57± 6.33 57.45± 6.36 57.61± 6.23 56.09± 5.61 57.74± 7.8 58.81± 6.54 59.88± 6.29
Rice 79.19± 5.12 80.54± 4.31 81.1± 4.28 79.88± 4.48 81.56± 3.61 80.35± 4.89 82.63± 5.63
Splice 66.13± 4.47 67.14± 2.62 67.45± 2.53 67.28± 2.07 68.05± 2.17 66.08± 4.98 66.32± 4.73
Svmguide1 70.89± 10.98 70.35± 11.74 81.07± 5.39 69.84± 11.06 74.46± 7.23 71.04± 11.11 73.13± 8.82

T -similarity is better overall;

Mushrooms and Phishing: from degradation to
improvement.

Results on SSL i.i.d.: no significant improvement nor
degradation.

Odonnat, Feofanov, Redko Leveraging Ensemble Diversity for Robust Self-Training
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Thanks for your attention !

Odonnat, Feofanov, Redko Leveraging Ensemble Diversity for Robust Self-Training
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