

Leveraging Ensemble Diversity for Robust Self-Training

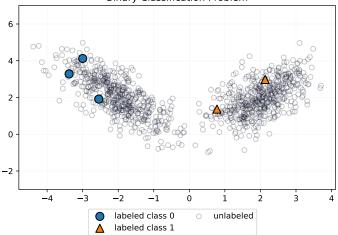
Ambroise Odonnat, Vasilii Feofanov, levgen Redko

Huawei Paris Noah's Ark Lab École des Ponts ParisTech

CAp RFIAP 2024, July 2 Published in AISTATS 2024

Introduction

In some applications data acquisition is cheaper than labeling,

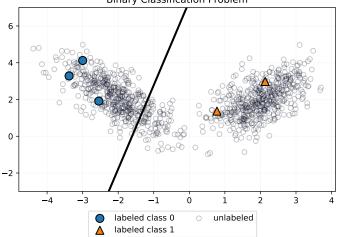


Binary Classification Problem

Leveraging Ensemble Diversity for Robust Self-Training

Introduction

And supervised learning is inefficient.



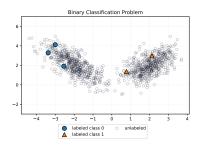
Binary Classification Problem

1/15

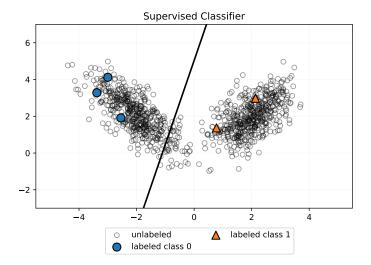
Semi-supervised learning: learn with both few labeled and many unlabeled training examples.

Family of SSL Methods:

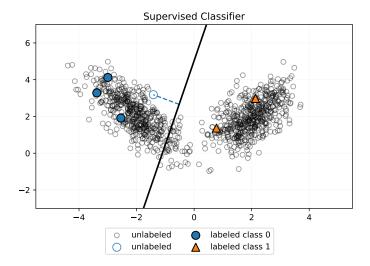
- Pseudo-labeling,
- Graph-based algorithms,
- Cluster-then-label,
- Unsupervised feature learning.



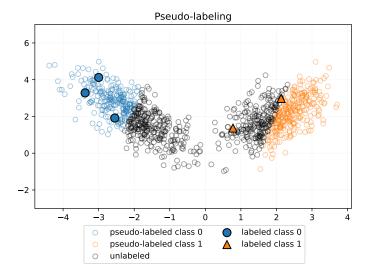
Start from a supervised classifier trained on the labeled set.



Predict labels and confidence scores for unlabeled data.



Pseudo-label most confident data and include to the labeled set.



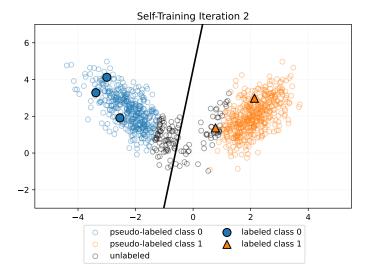
Odonnat, Feofanov, Redko

2/15

Retrain the model and repeat the same procedure again.

Self-Training Iteration 1

And again...



Odonnat, Feofanov, Redko

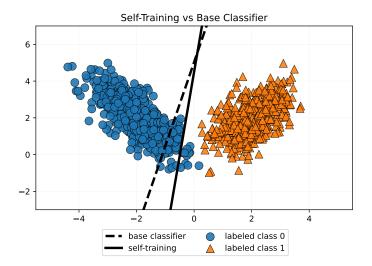
Leveraging Ensemble Diversity for Robust Self-Training

2/15

Until there are no data to pseudo-label.

Self-Training Iteration 3

Self-training pushed the boundary away from the confident data



Odonnat, Feofanov, Redko

Leveraging Ensemble Diversity for Robust Self-Training

2/15

Two Fundamental Questions

1 Confidence Estimation \rightarrow How to rank unlabeled data?

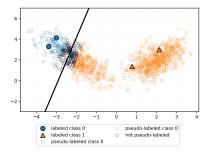
- **1** Confidence Estimation \rightarrow How to rank unlabeled data?
- 2 Pseudo-Labeling Policy → How to selected unlabeled data for pseudo-labeling at each iteration?
 - Questions 2 has been studied a lot (Amini et al., 2022).

- **1** Confidence Estimation \rightarrow How to rank unlabeled data?
- 2 *Pseudo-Labeling Policy* → How to selected unlabeled data for pseudo-labeling at each iteration?
 - Questions 2 has been studied a lot (Amini et al., 2022).

In this work, we focus on *Confidence Estimation*.

- **1** Confidence Estimation \rightarrow How to rank unlabeled data?
- 2 Pseudo-Labeling Policy → How to selected unlabeled data for pseudo-labeling at each iteration?
 - Questions 2 has been studied a lot (Amini et al., 2022).
- In this work, we focus on Confidence Estimation.

Biased prediction confidence \Rightarrow wrong direction can be chosen.



 Confidence can be biased when labeled and unlabeled data are not i.i.d.

- Confidence can be biased when labeled and unlabeled data are not i.i.d.
- Sample Selection Bias(SSB): data labeling subject to constraints

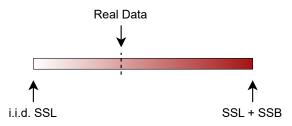
- Confidence can be biased when labeled and unlabeled data are not i.i.d.
- Sample Selection Bias(SSB): data labeling subject to constraints
 - Creation of group study in clinical trials;
 - People with poor mobility less likely to be in street surveys;
 - Labeling can be constrained for privacy reasons.

- Confidence can be biased when labeled and unlabeled data are not i.i.d.
- Sample Selection Bias(SSB): data labeling subject to constraints
 - Creation of group study in clinical trials;
 - People with poor mobility less likely to be in street surveys;
 - Labeling can be constrained for privacy reasons.
- Studied (Zadrozny, 2004) but not in the case of SSL.

We consider SSL + SSB:

1 Few labeled examples (SSL)

2 Biased labeling procedure (SSB)



 $\mathsf{Goal} \to \mathsf{obtain}\ \mathsf{a}\ \mathsf{method}\ \mathsf{good}\ \mathsf{on}\ \mathbf{both}\ \mathsf{i.i.d.}\ \mathsf{SSL}\ \mathsf{and}\ \mathsf{SSL}\ +\ \mathsf{SSB}.$

Implementation of SSL + SSB

• We select labeled data in biased manner by modeling $s_i \in \{0, 1\}$ with $\mathbb{P}(s_i | \mathbf{x}_i, y_i = k)$.

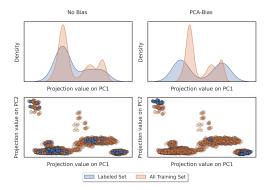
Implementation of SSL + SSB

- We select labeled data in biased manner by modeling $s_i \in \{0,1\}$ with $\mathbb{P}(s_i | \mathbf{x}_i, y_i = k)$.
- PCA-Bias algorithm:
 - **1** Apply PCA on training data from class k;
 - **2** Compute $PC_1(\mathbf{x}_i)$;
 - 3 $\mathbb{P}(s_i = 1 | \mathbf{x}_i, y_i = k) \propto \exp(r \cdot |\mathsf{PC}_1(\mathbf{x}_i)|), \quad r > 0.$

Implementation of SSL + SSB

- We select labeled data in biased manner by modeling $s_i \in \{0,1\}$ with $\mathbb{P}(s_i | \mathbf{x}_i, y_i = k)$.
- PCA-Bias algorithm:
 - 1 Apply PCA on training data from class k;
 - 2 Compute $\mathsf{PC}_1(\mathbf{x}_i)$;

3
$$\mathbb{P}(s_i = 1 | \mathbf{x}_i, y_i = k) \propto \exp(r \cdot |\mathsf{PC}_1(\mathbf{x}_i)|), \quad r > 0.$$

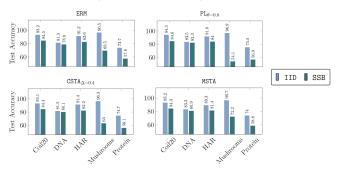


Failure of Self-training under SSL+SSB

- Base Classifier:
 - ERM: (MLP) learned on the labeled set;
- Self-training Policies:
 - $PL_{\theta=0.95}$: fixed threshold θ (Lee et al., 2013);
 - CSTA $_{\Delta=0.4}$: $\Delta\%$ most confident (Cascante-Bonilla et al., 2021);
 - MSTA: trade-off between the estimated error and amount of pseudo-labeling (Feofanov et al., 2019).

Failure of Self-training under SSL+SSB

- Base Classifier:
 - ERM: (MLP) learned on the labeled set;
- Self-training Policies:
 - $PL_{\theta=0.95}$: fixed threshold θ (Lee et al., 2013);
 - CSTA $_{\Delta=0.4}$: $\Delta\%$ most confident (Cascante-Bonilla et al., 2021);
 - MSTA: trade-off between the estimated error and amount of pseudo-labeling (Feofanov et al., 2019).

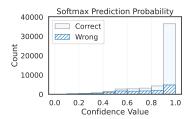


• Confidence estimation = ranking from easy to hard.

• Confidence estimation = ranking from easy to hard.

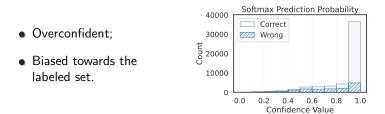
Softmax-based confidence is unreliable:

- Overconfident;
- Biased towards the labeled set.



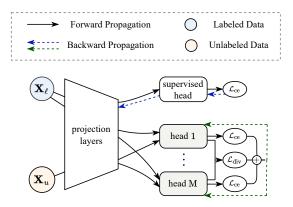
• Confidence estimation = ranking from easy to hard.

Softmax-based confidence is unreliable:



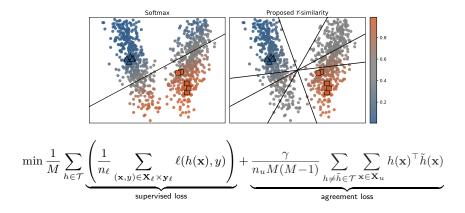
We propose new way to estimate confidence for a NN.

Architecture



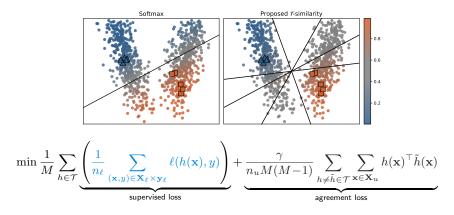
- Projection layers are learned through a classification head;
- Confidence estimator is ensemble of M = 5 linear heads that don't affect representation.

Leveraging Ensemble Diversity



10/15

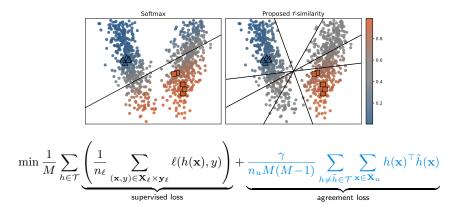
Leveraging Ensemble Diversity



We jointly train ensemble

To fit very well the labeled data

Leveraging Ensemble Diversity



We jointly train ensemble

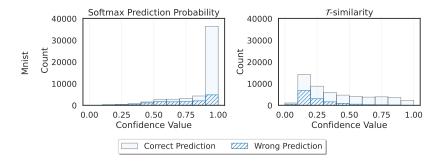
- To fit very well the labeled data
- And disagree as much possible on unlabeled data,

$\mathcal{T} ext{-similarity}$

• We define the \mathcal{T} -similarity as:

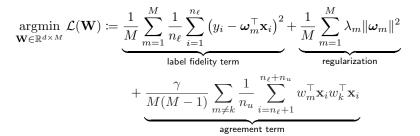
$$s_{\mathcal{T}}(\mathbf{x}) = \frac{1}{M(M-1)} \sum_{h \neq \tilde{h} \in \mathcal{T}} h(\mathbf{x})^{\top} \tilde{h}(\mathbf{x}).$$

For any \mathbf{x} , we have $0 \leq s_{\mathcal{T}}(\mathbf{x}) \leq 1$.



Binary Linear Case

• Consider binary linear classification: $\mathbf{W} = \{ \boldsymbol{w}_m \in \mathbb{R}^d | 1 \leq m \leq M \}.$



12/15

Binary Linear Case

• Consider binary linear classification: $\mathbf{W} = \{ \boldsymbol{w}_m \in \mathbb{R}^d | 1 \leq m \leq M \}.$

$$\underset{\mathbf{W}\in\mathbb{R}^{d\times M}}{\operatorname{argmin}} \mathcal{L}(\mathbf{W}) \coloneqq \underbrace{\frac{1}{M} \sum_{m=1}^{M} \frac{1}{n_{\ell}} \sum_{i=1}^{n_{\ell}} \left(y_{i} - \boldsymbol{\omega}_{m}^{\top} \mathbf{x}_{i}\right)^{2}}_{|\operatorname{abel fidelity term}} + \underbrace{\frac{1}{M} \sum_{m=1}^{M} \lambda_{m} ||\boldsymbol{\omega}_{m}||^{2}}_{\operatorname{regularization}} + \underbrace{\frac{\gamma}{M(M-1)} \sum_{m\neq k} \frac{1}{n_{u}} \sum_{i=n_{\ell}+1}^{n_{\ell}+n_{u}} w_{m}^{\top} \mathbf{x}_{i} w_{k}^{\top} \mathbf{x}_{i}}_{\operatorname{agreement term}}}$$

Under the assumption

$$\forall m \in [\![1,M]\!], \lambda_m > \frac{\gamma(M+1)}{n_u(M-1)} \lambda_{max}(\mathbf{X}_u^\top \mathbf{X}_u)$$

Binary Linear Case

• Consider binary linear classification: $\mathbf{W} = \{ \boldsymbol{w}_m \in \mathbb{R}^d | 1 \leq m \leq M \}.$

$$\underset{\mathbf{W} \in \mathbb{R}^{d \times M}}{\operatorname{argmin}} \mathcal{L}(\mathbf{W}) \coloneqq \underbrace{\frac{1}{M} \sum_{m=1}^{M} \frac{1}{n_{\ell}} \sum_{i=1}^{n_{\ell}} \left(y_{i} - \boldsymbol{\omega}_{m}^{\top} \mathbf{x}_{i} \right)^{2}}_{|\text{abel fidelity term}} + \underbrace{\frac{1}{M} \sum_{m=1}^{M} \lambda_{m} ||\boldsymbol{\omega}_{m}||^{2}}_{\operatorname{regularization}} + \underbrace{\frac{\gamma}{M(M-1)} \sum_{m \neq k} \frac{1}{n_{u}} \sum_{i=n_{\ell}+1}^{n_{\ell}+n_{u}} w_{m}^{\top} \mathbf{x}_{i} w_{k}^{\top} \mathbf{x}_{i}}_{\operatorname{agreement term}}}$$

Under the assumption

$$\forall m \in [\![1,M]\!], \lambda_m > \frac{\gamma(M+1)}{n_u(M-1)} \lambda_{max}(\mathbf{X}_u^\top \mathbf{X}_u)$$

We proved that L is continuous, strictly convex and coercive, so the problem admits a unique solution.

$$\ell_{\rm div}(\mathbf{W}, \mathbf{X}_u) = -\frac{1}{n_u M(M-1)} \sum_{m \neq k} \boldsymbol{\omega}_m^\top \mathbf{X}_u^\top \mathbf{X}_u \boldsymbol{\omega}_k.$$

$$\ell_{\rm div}(\mathbf{W}, \mathbf{X}_u) = -\frac{1}{n_u M(M-1)} \sum_{m \neq k} \boldsymbol{\omega}_m^\top \mathbf{X}_u^\top \mathbf{X}_u \boldsymbol{\omega}_k.$$

Theorem (Connection b/w optimal loss and cov. matrix of $\mathbf{X}_\ell)$

 $\ell_{\mathrm{div}}(\mathbf{W}^*, \mathbf{X}_u)$ is lower-bounded as follows:

$$\gamma \ell_{\rm div}(\mathbf{W}^*, \mathbf{X}_u) \geq \frac{1}{2M} \left(\lambda + \frac{1}{n_\ell} \lambda_{\min} \left(\mathbf{X}_\ell^\top \mathbf{X}_\ell \right) \right) \| \mathbf{W}^* \|_{\rm F}^2$$

$$\ell_{\rm div}(\mathbf{W}, \mathbf{X}_u) = -\frac{1}{n_u M(M-1)} \sum_{m \neq k} \boldsymbol{\omega}_m^\top \mathbf{X}_u^\top \mathbf{X}_u \boldsymbol{\omega}_k.$$

Theorem (Connection b/w optimal loss and cov. matrix of \mathbf{X}_{ℓ})

 $\ell_{\mathrm{div}}(\mathbf{W}^*,\mathbf{X}_u)$ is lower-bounded as follows:

$$\gamma \ell_{\rm div}(\mathbf{W}^*, \mathbf{X}_u) \geq \frac{1}{2M} \left(\lambda + \frac{1}{n_\ell} \lambda_{\min} \left(\mathbf{X}_\ell^\top \mathbf{X}_\ell \right) \right) \| \mathbf{W}^* \|_{\rm F}^2.$$

Optimal diversity is determined by variance within labeled data.

$$\ell_{\rm div}(\mathbf{W}, \mathbf{X}_u) = -\frac{1}{n_u M(M-1)} \sum_{m \neq k} \boldsymbol{\omega}_m^\top \mathbf{X}_u^\top \mathbf{X}_u \boldsymbol{\omega}_k.$$

Theorem (Connection b/w optimal loss and cov. matrix of $\mathbf{X}_\ell)$

 $\ell_{\mathrm{div}}(\mathbf{W}^*,\mathbf{X}_u)$ is lower-bounded as follows:

$$\gamma \ell_{\rm div}(\mathbf{W}^*, \mathbf{X}_u) \geq \frac{1}{2M} \left(\lambda + \frac{1}{n_\ell} \lambda_{\min} \left(\mathbf{X}_\ell^\top \mathbf{X}_\ell \right) \right) \| \mathbf{W}^* \|_{\rm F}^2.$$

- Optimal diversity is determined by variance within labeled data.
- Theorem shows importance of representation learning.

Dataset	ERM	$PL_{\theta=0.8}$		$CSTA_{\Delta=0.4}$		MSTA	
Dataset		softmax	$\mathcal{T} ext{-similarity}$	softmax	$\mathcal{T} ext{-similarity}$	softmax	\mathcal{T} -similarity
Cod-RNA	74.51 ± 8.86	74.75 ± 8.14	80.06 ± 3.55	73.39 ± 7.36	$\textbf{78.39} \pm \textbf{4.66}$	75.28 ± 8.79	76.88 ± 7.67
COIL-20	84.54 ± 2.19	84.69 ± 3.56	84.57 ± 2.85	84.38 ± 3.05	84.57 ± 3.16	84.32 ± 2.34	84.07 ± 2.85
Digits	75.68 ± 4.59	80.47 ± 3.8	78.2 ± 3.34	78.4 ± 3.28	79.14 ± 3.5	78.02 ± 5.15	79.8 ± 5.92
DNA	78.82 ± 2.31	80.29 ± 2.24	79.06 ± 2.31	80.12 ± 2.08	80.76 ± 2.24	80.89 ± 2.64	84.09 ± 1.7
DryBean	64.6 ± 3.89	65.6 ± 4.18	61.55 ± 4.91	64.91 ± 3.72	64.6 ± 3.53	66.24 ± 4.31	67.0 ± 3.96
HAR	82.57 ± 1.96	82.87 ± 3.02	83.12 ± 2.27	82.19 ± 2.61	83.53 ± 3.77	81.35 ± 2.54	81.16 ± 1.63
Mnist	50.74 ± 2.25	51.08 ± 2.55	52.69 ± 2.42	51.7 ± 3.52	54.26 ± 1.82	51.6 ± 2.58	54.18 ± 2.34
Mushrooms	69.45 ± 7.29	59.53 ± 10.46	71.36 ± 6.63	62.98 ± 7.25	77.55 ± 7.65	72.16 ± 7.59	76.16 ± 13.04
Phishing	67.42 ± 3.55	66.08 ± 5.66	$\textbf{77.41} \pm \textbf{3.93}$	66.88 ± 5.64	76.17 ± 8.58	69.48 ± 4.37	75.83 ± 7.52
Protein	57.57 ± 6.33	57.45 ± 6.36	57.61 ± 6.23	56.09 ± 5.61	57.74 ± 7.8	58.81 ± 6.54	59.88 ± 6.29
Rice	79.19 ± 5.12	80.54 ± 4.31	81.1 ± 4.28	79.88 ± 4.48	81.56 ± 3.61	80.35 ± 4.89	82.63 ± 5.63
Splice	66.13 ± 4.47	67.14 ± 2.62	67.45 ± 2.53	67.28 ± 2.07	68.05 ± 2.17	66.08 ± 4.98	66.32 ± 4.73
Svmguide1	70.89 ± 10.98	70.35 ± 11.74	81.07 ± 5.39	69.84 ± 11.06	74.46 ± 7.23	71.04 ± 11.11	73.13 ± 8.82

• *T*-similarity is better overall;

Dataset	ERM	$PL_{\theta=0.8}$		$CSTA_{\Delta=0.4}$		MSTA	
Dataset		softmax	\mathcal{T} -similarity	softmax	\mathcal{T} -similarity	softmax	\mathcal{T} -similarity
Cod-RNA	74.51 ± 8.86	74.75 ± 8.14	80.06 ± 3.55	73.39 ± 7.36	$\textbf{78.39} \pm \textbf{4.66}$	75.28 ± 8.79	76.88 ± 7.67
COIL-20	84.54 ± 2.19	84.69 ± 3.56	84.57 ± 2.85	84.38 ± 3.05	84.57 ± 3.16	84.32 ± 2.34	84.07 ± 2.85
Digits	75.68 ± 4.59	80.47 ± 3.8	78.2 ± 3.34	78.4 ± 3.28	79.14 ± 3.5	78.02 ± 5.15	79.8 ± 5.92
DNA	78.82 ± 2.31	80.29 ± 2.24	79.06 ± 2.31	80.12 ± 2.08	80.76 ± 2.24	80.89 ± 2.64	84.09 ± 1.7
DryBean	64.6 ± 3.89	65.6 ± 4.18	61.55 ± 4.91	64.91 ± 3.72	64.6 ± 3.53	66.24 ± 4.31	67.0 ± 3.96
HAR	82.57 ± 1.96	82.87 ± 3.02	83.12 ± 2.27	82.19 ± 2.61	83.53 ± 3.77	81.35 ± 2.54	81.16 ± 1.63
Mnist	50.74 ± 2.25	51.08 ± 2.55	52.69 ± 2.42	51.7 ± 3.52	54.26 ± 1.82	51.6 ± 2.58	54.18 ± 2.34
Mushrooms	69.45 ± 7.29	59.53 ± 10.46	71.36 ± 6.63	62.98 ± 7.25	77.55 ± 7.65	72.16 ± 7.59	$\textbf{76.16} \pm \textbf{13.04}$
Phishing	67.42 ± 3.55	66.08 ± 5.66	$\textbf{77.41} \pm \textbf{3.93}$	66.88 ± 5.64	$\textbf{76.17} \pm \textbf{8.58}$	69.48 ± 4.37	75.83 ± 7.52
Protein	57.57 ± 6.33	57.45 ± 6.36	57.61 ± 6.23	56.09 ± 5.61	57.74 ± 7.8	58.81 ± 6.54	59.88 ± 6.29
Rice	79.19 ± 5.12	80.54 ± 4.31	81.1 ± 4.28	79.88 ± 4.48	81.56 ± 3.61	80.35 ± 4.89	82.63 ± 5.63
Splice	66.13 ± 4.47	67.14 ± 2.62	67.45 ± 2.53	67.28 ± 2.07	68.05 ± 2.17	66.08 ± 4.98	66.32 ± 4.73
Svmguide1	70.89 ± 10.98	70.35 ± 11.74	81.07 ± 5.39	69.84 ± 11.06	74.46 ± 7.23	71.04 ± 11.11	73.13 ± 8.82

- *T*-similarity is better overall;
- Mushrooms and Phishing: from degradation to improvement.

Dataset	EBM	$PL_{\theta=0.8}$		$\mathtt{CSTA}_{\Delta=0.4}$		MSTA	
Dataset	231011	softmax	$\mathcal{T} ext{-similarity}$	softmax	$\mathcal{T} ext{-similarity}$	softmax	$\mathcal{T} ext{-similarity}$
Cod-RNA	74.51 ± 8.86	74.75 ± 8.14	80.06 ± 3.55	73.39 ± 7.36	$\textbf{78.39} \pm \textbf{4.66}$	75.28 ± 8.79	76.88 ± 7.67
COIL-20	84.54 ± 2.19	84.69 ± 3.56	84.57 ± 2.85	84.38 ± 3.05	84.57 ± 3.16	84.32 ± 2.34	84.07 ± 2.85
Digits	75.68 ± 4.59	80.47 ± 3.8	78.2 ± 3.34	78.4 ± 3.28	79.14 ± 3.5	78.02 ± 5.15	79.8 ± 5.92
DNA	78.82 ± 2.31	80.29 ± 2.24	79.06 ± 2.31	80.12 ± 2.08	80.76 ± 2.24	80.89 ± 2.64	84.09 ± 1.7
DryBean	64.6 ± 3.89	65.6 ± 4.18	61.55 ± 4.91	64.91 ± 3.72	64.6 ± 3.53	66.24 ± 4.31	67.0 ± 3.96
HAR	82.57 ± 1.96	82.87 ± 3.02	83.12 ± 2.27	82.19 ± 2.61	83.53 ± 3.77	81.35 ± 2.54	81.16 ± 1.63
Mnist	50.74 ± 2.25	51.08 ± 2.55	52.69 ± 2.42	51.7 ± 3.52	54.26 ± 1.82	51.6 ± 2.58	54.18 ± 2.34
Mushrooms	69.45 ± 7.29	59.53 ± 10.46	71.36 ± 6.63	62.98 ± 7.25	77.55 ± 7.65	72.16 ± 7.59	76.16 ± 13.04
Phishing	67.42 ± 3.55	66.08 ± 5.66	$\textbf{77.41} \pm \textbf{3.93}$	66.88 ± 5.64	76.17 ± 8.58	69.48 ± 4.37	75.83 ± 7.52
Protein	57.57 ± 6.33	57.45 ± 6.36	57.61 ± 6.23	56.09 ± 5.61	57.74 ± 7.8	58.81 ± 6.54	59.88 ± 6.29
Rice	79.19 ± 5.12	80.54 ± 4.31	81.1 ± 4.28	79.88 ± 4.48	81.56 ± 3.61	80.35 ± 4.89	82.63 ± 5.63
Splice	66.13 ± 4.47	67.14 ± 2.62	67.45 ± 2.53	67.28 ± 2.07	68.05 ± 2.17	66.08 ± 4.98	66.32 ± 4.73
Svmguide1	70.89 ± 10.98	70.35 ± 11.74	81.07 ± 5.39	69.84 ± 11.06	74.46 ± 7.23	71.04 ± 11.11	73.13 ± 8.82

- *T*-similarity is better overall;
- Mushrooms and Phishing: from degradation to improvement.
- Results on SSL i.i.d.: no significant improvement nor degradation.

Thanks for your attention !