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Abstract

Self-learning is a classical approach for learning with both labeled and
unlabeled observations which consists in giving pseudo-labels to unlabeled
training instances with a confidence score over a predetermined thresh-
old. At the same time, the pseudo-labeling technique is prone to error and
runs the risk of adding noisy labels into unlabeled training data. In this
paper, we present a probabilistic framework for analyzing self-learning in
the multi-class classification scenario with partially labeled data. First,
we derive a transductive bound over the risk of the multi-class majority
vote classifier. Based on this result, we propose to automatically choose
the threshold for pseudo-labeling that minimizes the transductive bound.
Then, we introduce a mislabeling error model to analyze the error of the
majority vote classifier in the case of the pseudo-labeled data. We derive a
probabilistic C-bound over the majority vote error when an imperfect la-
bel is given. Empirical results on different data sets show the effectiveness
of our framework compared to several state-of-the-art semi-supervised ap-
proaches.

1 Introduction

We consider classification problems where the scarce labeled training set comes
along with a huge number of unlabeled training examples. This is for example
the case in web-oriented applications where a huge number of unlabeled obser-
vations arrive sequentially, and there is not enough time to manually label them
all.

In this context, the use of traditional supervised approaches trained on avail-
able labeled data usually leads to poor learning performance. In semi-supervised
learning (Chapelle et al., 2010), it is generally assumed that unlabeled training
examples contain valuable information about the prediction problem, so the aim
is to exploit both available labeled and unlabeled training observations in order
to provide an improved solution. The self-learning1 (Tür et al., 2005; Amini

1It is also known as self-training or self-labeling.
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and Usunier, 2015) is a classical approach to classify partially labeled data in a
supervised fashion, where the training set is augmented by iteratively assigning
pseudo-labels to unlabeled examples with the confidence score above a certain
threshold. However, fixing this threshold is a bottleneck of this approach. In
reality, at every iteration, the self-learning algorithm injects some noise in label-
ing, so the question would be how to optimally choose the threshold to minimize
the mislabeling probability.

In this paper, we tackle this problem from a theoretical point of view for
the multi-class classification case and analyze the behavior of majority vote
classifiers (also known as Bayes classifiers, including Random Forest (Lorenzen
et al., 2019), AdaBoost (Germain et al., 2015), SVM (Fakeri-Tabrizi et al.,
2015) and neural networks (Letarte et al., 2019)) for semi-supervised learning.
The majority vote classifier is well studied in the binary case, where a classical
approach is to bound the majority vote risk indirectly by twice the risk of related
stochastic Gibbs classifier (Langford and Shawe-Taylor, 2003; Bégin et al., 2014).
However, the voters may compensate the errors of each other, so the majority
vote risk will be much smaller than the Gibbs risk.

In the transductive setting (Vapnik, 1998, p. 339), where the aim is to
correctly classify unlabeled training examples, Feofanov et al. (2019) derived
a bound for the multi-class majority vote classifier by analyzing distribution
of the class vote, focusing on the class confusion matrix as an error indicator
as proposed by Morvant et al. (2012). This bound is obtained by analytically
solving a linear program and it comes out that in the case when the majority vote
classifier makes most of its errors on examples with low class vote, the obtained
bound is tight. This result is proposed to develop a new multi-class self-learning
algorithm where the threshold is automatically found based on the proposed
transductive bound. Our paper extends this work by deriving the transductive
bounds in the probabilistic framework. In this case, the transductive bound is
estimated by assigning soft labels for the unlabeled set, which is more effective in
practice as pointed out by Feofanov et al. (2019), so it bridges the gap between
the theoretical analyzes and the application. Subsequently, we theoretically
analyze the behavior of the majority vote classifier after the inclusion of pseudo-
labeled training examples by self-learning. Even when the threshold is optimally
chosen, the pseudo-labels may still be erroneous, so the question is how to
evaluate the risk in this noisy case. For this, we take explicitly into account
possible mislabeling by considering a mislabeling model of Chittineni (1980).
At first, we show the connection between the classification error of the true and
the imperfect label. Then, we derive a new probabilistic C-bound over the error
of the multi-class majority vote classifier in the presence of imperfect labels.
This bound is based on the mean and the variance of the prediction margin
(Lacasse et al., 2007), so it reflects both the individual strength of voters and
their correlation in prediction.

The rest of this paper is organized as follows. Section 2 provides an overview
of the related work. In Section 3 we introduce the problem statement and the
proposed framework. In Section 4 we present a probabilistic bound over the
transductive risk of the multi-class majority vote classifier and describe the
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extended self-learning algorithm that learns the threshold using the proposed
bound. Section 5 shows how to derive the C-bound in the probabilistic frame-
work taking into account mislabeling errors. In Section 6, we present empirical
evidence showing that the proposed self-learning strategy is effective compared
to several state-of-the-art approaches, and we illustrate the behavior of the new
C-bound on real data sets. Finally, in Section 7 we summarize the outcome of
this study and discuss the future work.

2 Related Work

Generalization guarantees of majority vote classifiers are well studied in the
binary supervised setting. A common approach is to bound the majority vote
risk by twice the Gibbs risk (Langford and Shawe-Taylor, 2003). Many works
are focused on deriving tight PAC guarantees for the Gibbs classifier in the
inductive case (McAllester, 2003; Maurer, 2004; Catoni, 2007) as well as in
the transductive one (Derbeko et al., 2004; Bégin et al., 2014), and applying
these results for optimization (Thiemann et al., 2017), linear classifiers (Germain
et al., 2009), random forests (Lorenzen et al., 2019), neural networks (Letarte
et al., 2019). While this bound can be tight, it reflects only the individual
strength of voters, so using it as a minimization criterion often leads to an
increase in the test error (Masegosa et al., 2020). This motivates to opt for
bounds that directly upper bound the majority vote error. Amini et al. (2008)
derives a transductive bound based on how voters agree on every unlabeled
example, while Lacasse et al. (2007) upper bounds the generalization error by
taking additionally into account the error correlation between voters.

Only few results exist for the multi-class majority vote classifier. In the
supervised setting, Morvant et al. (2012) derives generalization guarantees on
the confusion matrix’ norm, whereas Laviolette et al. (2017) extends the C-
bound of Lacasse et al. (2007) to the multi-class case. Masegosa et al. (2020)
studies tight estimations from data by deriving a relaxed version of Laviolette
et al. (2017). In the transductive setting, Feofanov et al. (2019) extends the
bound of Amini et al. (2008) to the multi-class case. In this paper, we show how
the bounds of Feofanov et al. (2019) and Laviolette et al. (2017) are generalized
to the probabilistic framework.

However, the aforementioned studies are limited by assuming that all train-
ing examples are perfectly labeled. Learning with an imperfect supervisor, in
which training data contains an unknown portion of imperfect labels, has been
considered in both supervised (Natarajan et al., 2013; Scott, 2015; Xia et al.,
2019) and semi-supervised settings (Amini and Gallinari, 2003). In most cases,
a focus is on the estimation of the mislabeling errors to train a classifier, and
theoretical studies are limited by the binary case (Natarajan et al., 2013; Scott,
2015). Chittineni (1980) analyzes the connection between the true and the
imperfect label in the multi-class case but only for the maximum a posteriori
classifier. We extend the latter result to an arbitrary classifier and use it to
derive a new C-bound with imperfect labels. To the best of our knowledge, the

3



majority vote classifier has not been yet studied in the presence of imperfect
labels.

In this paper, our theoretical development has a particular focus on semi-
supervised learning. While there exists theoretical analysis of graph-based (El-
Yaniv and Pechyony, 2009) and clustering (Rigollet, 2007; Maximov et al., 2018)
approaches, little attention is given to a self-learning algorithm (Tür et al.,
2005). A common approach is to perform self-learning with a fixed threshold;
another method is to control the number of pseudo-labeled examples by cur-
riculum learning (Cascante-Bonilla et al., 2020). We show that this threshold
can be effectively found at every iteration as a trade-off between the number
of pseudo-labeled examples and the bounded transductive error evaluated on
them.

3 Framework and Definitions

We consider multi-class classification problems with an input space X ⊂ Rd and
an output space Y = {1, . . . ,K}, K ≥ 2. We denote by X = (X1, . . . , Xd) ∈ X
(resp. Y ∈ Y) an input (resp. output) random variable. Considering the semi-
supervised framework, we assume an available set of labeled training examples
ZL = {(xi, yi)}li=1 ∈ (X ×Y)l, identically and independently distributed (i.i.d.)
with respect to a fixed yet unknown probability distribution P (X, Y ) over X×Y,
and an available set of unlabeled training examples XU = {xi}l+ui=l+1 ∈ X u is
supposed to be drawn i.i.d. from the marginal distribution P (X), over the
domain X . Further, we denote by 0K the zero vector of size K, 0K,K is the
zero matrix of size K ×K and n := l + u.

In this work, a fixed class of classifiers H = {h|h : X → Y}, called the
hypothesis space, is considered and defined without reference to the training
set. Over H, two probability distributions are introduced: the prior P and the
posterior Q that are defined respectively before and after observing the training
set. We focus on two classifiers: the Q-weighted majority vote classifier (also
called the Bayes classifier)2 defined for all x ∈ X as:

BQ(x) := argmax
c∈{1,...,K}

[Eh∼QI(h(x) = c)] , (1)

and, the stochastic Gibbs classifier GQ that for every x ∈ X predicts the label
using a randomly chosen classifier h ∈ H according to Q. The former one
represents a class of learning methods, where the predictions of hypotheses are
aggregated using the majority vote rule scheme, while the latter one is often
used to analyze the behavior of the Bayes classifier.

The goal of learning is formulated as to choose a posterior distribution Q
over H based on the training set ZL ∪ XU such that the classifier BQ will have
the smallest possible error value. As opposed to works of Derbeko et al. (2004);
Bégin et al. (2014); Feofanov et al. (2019), who considered the deterministic case

2For the sake of brevity, we will tend to use the latter name, which should not be confused
with other learning paradigms based on the Bayesian inference, e.g., the Bayesian statistics.
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where for each unlabeled example there is one and only one possible label, in
this paper we consider the more general probabilistic case assuming possibility
of multiple outcomes for each example.

To measure confidence of the majority vote classifier in its prediction, the
notions of class votes and margin are further considered. Given an observation
x, we define a vector of class votes vx = (vQ(x, c))Kc=1 where the c-th component
corresponds to the total vote given to the class c:

vQ(x, c) := Eh∼QI(h(x) = c) =
∑

h:h(x)=c

Q(h).

In practice, the vote vQ(x, c) can be regarded as an estimation of the posterior
probability P (Y = c|X = x); a large value indicates high confidence of the
classifier that the true label of x is c.
Given an observation x, its margin is defined in the following way:

MQ(x, y) := Eh∼QI(h(x) = y)−max
c∈Y
c6=y

Eh∼QI(h(x) = c) = vQ(x, y)−max
c∈Y
c6=y

vQ(x, c).

(2)

The margin measures a gap between the vote of the true class and the maximal
vote among all other classes. If the value is strictly positive for an example x,
then y will be the output of the majority vote, so the example will be correctly
classified.

4 Probabilistic Transductive Bounds and Their
Application

In this section, we derive guarantees for the multi-class majority vote classifier in
the transductive setting (Vapnik, 1982, 1998), i.e., when the error is evaluated on
the unlabeled set XU only. The proposed bound assumes that the majority vote
classifier makes mistake on low class votes and thereby use votes as indicators
of confidence. Then, we propose an application for generic self-learning where
the threshold is based on the bound minimization.

4.1 Transductive conditional risk

At first, we show how to upper bound the risk evaluated conditionally to the
values of the true and the predicted class. Given a classifier h, for each class
pair (i, j) ∈ {1, . . . ,K}2 such that i 6= j, the transductive conditional risk is
defined as follows:

RU (h, i, j) :=
1

ui

∑
x∈XU

P (Y = i|X = x)I(h(x) = j),

where ui =
∑

x∈XU
P (Y = i|X = x) is the expected number of unlabeled

observations from the class i ∈ {1, . . . ,K}. The value of RU (h, i, j) indicates
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the expected proportion of unlabeled examples that are classified to the class j
being from the class i. We call RU (BQ, i, j) as the transductive Bayes conditional
risk. In the similar way, the transductive Gibbs conditional risk is defined for
all (i, j) ∈ {1, . . . ,K}2, i 6= j by:

RU (GQ, i, j) := Eh∼QRU (h, i, j).

Although the Gibbs classifier is stochastic, its error is defined in expectation
over Q. In other words, the Gibbs conditional risk represents the Q-weighted
average conditional risk of hypotheses h ∈ H.

In addition, we define the transductive joint Bayes conditional risk for a
threshold vector θ ∈ [0, 1]K , for (i, j) ∈ {1, . . . ,K}2, i 6= j, as follows:

RU∧θ(BQ, i, j) :=
1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) ≥ θj). (3)

If the Bayes classifier makes mistakes, i.e., outputs the class j when the true class
is i, on the examples with low values of vQ(x, j), then the joint risk computes
the probability to make the conditional error on confident observations when a
large enough θj is set with respect to the distribution of vQ(x, j).

The following Lemma 4.1 connects the conditional Gibbs risk and the joint
Bayes conditional risk by considering a conditional Bayes error regarding a cer-
tain class vote.

Lemma 4.1. For c ∈ {1, . . . ,K}, let Γc = {γc ∈ [0, 1]| ∃ x ∈ XU : γc =
vQ(x, c)} be the set of unique votes for the unlabeled examples to the class c.
Let enumerate its elements such that they form an ascending order:

γ(1)
c ≤ γ(2)

c ≤ · · · ≤ γ(Nc)
c ,

where Nc := |Γc|. Denote b
(t)
i,j := 1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) =

j)I(vQ(x, j) = γ
(t)
j ).

Then, for all (i, j) ∈ {1, . . . ,K}2:

RU (GQ, i, j) ≥ Ki,j :=

Nj∑
t=1

b
(t)
i,jγ

(t)
j , (4)

RU∧θ(BQ, i, j) =

Nj∑
t=kj+1

b
(t)
i,j , (5)

where kj = max{t|γ(t)
j < θj} with max(∅) = 0 by convention.

The proof is provided in Appendix A.1. Following Lemma 4.1, we derive a
bound on the Bayes conditional risk using the class vote distribution.

Theorem 4.2. Let BQ be the Q-weighted majority vote classifier defined by Eq.
(1). Then for any Q, for all θ ∈ [0, 1]K , for all (i, j) ∈ {1, . . . ,K}2 we have:
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RU∧θ(BQ, i, j) ≤ inf
γ∈[θj ,1]

{
I

(≤,<)
i,j (θj , γ) +

1

γ

⌊
Ki,j −M<

i,j(γ) +M<
i,j(θj)

⌋
+

}
,

(TBi,j)

where

• Ki,j = 1
ui

∑
x∈XU P (Y = i|X = x)vQ(x, j)I(BQ(x) = j) is the trans-

ductive Gibbs conditional risk evaluated on the examples for which the
majority vote class is j,

• I
(/1,/2)
i,j (s1, s2) = 1

ui

∑
x∈XU

P (Y = i|X = x)I(s1/1vQ(x, j)/2s2), (/1, /2) ∈
{<,≤}2 is the expected proportion of unlabeled examples from the class i
with vQ(x, j) in interval [θj , γ),

• M<
i,j(s) = 1

ui

∑
x∈XU

P (Y = i|X = x)vQ(x, j)I(vQ(x, j) < s), is the aver-
age of j-votes in the class i that less than s.

Proof. We would like to find an upper bound for the joint Bayes conditional
risk. Hence, for all (i, j) ∈ {1, . . . ,K}2, for all θ ∈ [0, 1]K , we consider the case
when the mistake is maximized. Then, using Lemma 4.1:

RU∧θ(BQ, i, j) =

Nj∑
t=kj+1

b
(t)
i,j ≤ max

b
(1)
i,j ,...,b

(Nj)

i,j

Nj∑
t=kj+1

b
(t)
i,j , (6)

with kj = max{t|γ(t)
j < θj}I({t|γ(t)

j < θj} 6= ∅).
Let B

(t)
i,j =

∑
x∈XU

P (Y = i|X = x)I(vQ(x, j) = γ
(t)
j )/ui. Then, it can be

noticed that 0 ≤ b
(t)
i,j ≤ B

(t)
i,j . Remember that Ki,j can also be written as∑Nj

t=1 b
(t)
i,jγ

(t)
j . Hence the bound defined by Eq. (6) should satisfy the following

linear program :

max
b
(1)
i,j ,...,b

(Nj)

i,j

Nj∑
t=kj+1

b
(t)
i,j (7)

s.t. ∀t, 0 ≤ b(t)i,j ≤ B
(t)
i,j and

Nj∑
t=1

b
(t)
i,jγ

(t)
j = Ki,j .

The solution of (7) can be solved analytically and it is attained for:

b
(t)
i,j = min

B(t)
i,j ,

⌊
1

γ
(t)
j

(Ki,j −
∑

k<w<t

γ
(w)
j B

(w)
i,j )

⌋
+

 I(t ≤ kj). (8)

For the sake of a better presentation, the proof of this solution is deferred to
the appendix A.1, Lemma A.1. Further, we can notice that, for all (i, j) ∈
{1, . . . ,K}2, ∑

kj<w<t

γ
(w)
j B

(w)
i,j = M<

i,j(γ
(t)
j )−M<

i,j(θj).
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Let p = max{t|Ki,j−M<
i,j(γ

(t)
j )+M<

i,j(θj) > 0}. Then, Eq. (8) can be re-written
as follows:

b
(t)
i,j =


0 t ≤ kj
B

(t)
i,j kj + 1 ≤ t < p
1

γ
(p)
j

(Ki,j −M<
i,j(γ

(p)
j ) +M<

i,j(θj)) t = p

0 t > p.

(9)

Notice that
∑p−1
t=kj+1B

(t)
i,j = I

(≤,<)
i,j (θj , γ

(p)
j ). Using this fact as well as Eq. (9),

we infer:

RU∧θ(BQ, i, j) ≤ I(≤,<)
i,j (θj , γ

(p)
j ) +

1

γ
(p)
j

(Ki,j −M<
i,j(γ

(p)
j ) +M<

i,j(θj)).

Consider the function

γ 7→ Ui,j(γ) := I
(≤,<)
i,j (θj , γ) +

1

γ

⌊
Ki,j −M<

i,j(γ) +M<
i,j(θj)

⌋
+
.

To prove the theorem, it remains to verify that, for all (i, j) ∈ {1, . . . ,K}2, for

all γ ∈ [θj , 1], Ui,j(γ
(p)
j ) ≤ Ui,j(γ). For this, consider γ

(w)
j with w ∈ {1, . . . , Nj}.

If w > p, then Ui,j(γ
(p)
j ) ≤ I(≤,≤)

i,j (θj , γ) ≤ Ui,j(γ(w)
j ).

If w < p, then

Ui,j(γ
(p)
j )− Ui,j(γ(w)

j ) =

p∑
t=w

b
(t)
i,j −

1

γ
(w)
j

(
Ki,j −M<

i,j(γ
(w)
j ) +M<

i,j(θj)
)

=

p∑
t=w

b
(t)
i,j −

1

γ
(w)
j

(
p∑

t=k+1

b
(t)
i,jγ

(t)
j −

w−1∑
t=k+1

γ
(t)
j b

(t)
i,j

)

=
1

γ
(w)
j

(
p∑

t=w

b
(t)
i,jγ

(w)
j −

p∑
t=w

b
(t)
i,jγ

(t)
j

)
≤ 0.

which completes the proof.

Following this result, a transductive bound for the joint Bayes conditional
risk can be found by arranging the class votes in an ascending order and con-
sidering the linear program (7), where the connection with the Gibbs classifier
is used as a linear constraint. Furthermore, as the bound is the infimum of
the function Ui,j on the interval [θj , 1] it can be computed in practice without
solving the linear program explicitly.

When θj = 0, a bound over the transductive Bayes conditional risk is directly
obtained from (TBi,j) by noticing that M<

i,j(0) = 0 in this case:

RU (BQ, i, j) ≤ inf
γ∈[0,1]

{
I

(≤,<)
i,j (0, γ) +

1

γ

⌊
Ki,j −M<

i,j(γ)
⌋

+

}
. (10)
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We note that in the binary case (Amini et al., 2008), the transductive Gibbs
risk used inside the linear program can be bounded either by the PAC-Bayesian
bound (Derbeko et al., 2004; Bégin et al., 2014) or by 1/2 (the worst possible
error of the binary classifier), which allows to compute the transductive bound.
In the multi-class case, the bound can be evaluated only by approximating the
posterior probabilities. Once we estimate the posterior probability, Ki,j and the
transductive conditional Gibbs risk are also directly approximated.

4.2 Transductive confusion matrix and transductive error
rate

In this section, based on Theorem 4.2, we derive bounds for two other error
measures: the error rate and the confusion matrix (Morvant et al., 2012). We
define the transductive error rate and the transductive joint error rate of the
Bayes classifier BQ over the unlabeled set XU given a vector θ = (θc)

K
c=1 ∈

[0, 1]K , as:

RU (BQ) :=
1

u

∑
x∈XU

∑
c∈{1,...,K}
c6=BQ(x)

P (Y = c|X = x),

RU∧θ(BQ) :=
1

u

∑
x∈XU

∑
c∈{1,...,K}
c6=BQ(x)

P (Y = c|X = x)I(vQ(x, BQ(x)) ≥ θBQ(x)).

(11)

Then, we define the transductive joint Bayes confusion matrix for θ ∈
[0, 1]K , and (i, j) ∈ {1, . . . ,K}2, as follows:

[
CU∧θh

]
i,j

=

{
0 i = j,

RU∧θ(h, i, j) i 6= j.

The following proposition links the error rate with the joint confusion matrix:

Proposition 4.3. Let BQ be the majority vote classifier. Given a vector θ ∈
[0, 1]K , for p := {ui/u}Ki=1, where ui =

∑
x∈XU

P (Y = i|X = x), we have:

RU∧θ(BQ) =
∥∥∥(CU∧θBQ

)ᵀ
p
∥∥∥

1
. (12)

Proof. To prove Eq. (12), combine the definition of transductive joint Bayes
conditional risk given in Eq. (3) and Eq. (11) as follows:

RU∧θ(BQ) =
1

u

K∑
i=1

K∑
j=1
j 6=i

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) ≥ θj)

=

K∑
i=1

ui
u

K∑
j=1
j 6=i

RU∧θ(BQ, i, j) =
∥∥∥(CU∧θBQ

)ᵀ
p
∥∥∥

1
.
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From Theorem 4.2, we derive corresponding transductive bounds for the
confusion matrix norm and the error rate of the Bayes classifier. To simplify
notations, we introduce a matrix Uθ of size K × K with zeros on the main
diagonal and the following (i, j)-entries, i 6= j:

[Uθ]i,j := inf
γ∈[θj ,1]

{
I

(≤,<)
i,j (θj , γ) +

1

γ

⌊
(Ki,j −M<

i,j(γ) +M<
i,j(θj))

⌋
+

}
,

which corresponds to the transductive bound proposed in Theorem 4.2.

Corollary 4.4. For all θ ∈ [0, 1]K , we have:

‖CU∧θBQ
‖ ≤ ‖Uθ‖. (13)

Moreover, we have the following bound:

RU∧θ(BQ) ≤ ‖Uᵀ
θ p‖1 . (14)

where ‖.‖ is the spectral norm; and p = {ui/u}Ki=1, with ui =
∑

x∈XU
P (Y =

i|X = x).

Proof. The confusion matrix CU∧θBQ
is always non-negative, and from Theorem

4.2, each of its entries is smaller than the corresponding entry of Uθ. Hence,
from the property of spectral norm for two positive matrices A and B :

0K,K � A � B⇒ ‖A‖ ≤ ‖B‖,

where A � B denotes that each element of A is smaller than the corresponding
element of B, we deduce Eq. (13).

With the same computations, we observe the following inequality:(
CU∧θBQ

)ᵀ
p ≤ Uᵀ

θ p.

Elements of the left vector are non-negative. Hence the inequality holds for the
`1-norm, and taking into account Proposition 4.3 we infer:

RU∧θ(BQ) =
∥∥∥(CU∧θBQ

)ᵀ
p
∥∥∥

1
≤ ‖Uᵀ

θ p‖1 .

Note that the transductive bound of the Bayes error rate is obtained from
Eq. (14) by taking θ as the zero vector 0K :

RU (BQ) ≤
∥∥Uᵀ

0K
p
∥∥

1
. (TB)
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4.3 Tightness Guarantees

In this section, we assume that the Bayes classifier makes most of its error on
unlabeled examples with a low prediction vote, i.e., class votes can be considered
as indicators of confidence. In the following proposition, we show that the bound

becomes tight under certain conditions. We remind that Γj = {γ(t)
j } is the set

of unique votes for the unlabeled examples to the class j, and b
(t)
i,j corresponds

to the Bayes conditional risk on the examples with the vote γ
(t)
j (see Lemma

4.1 for more details).

Proposition 4.5. Let Γτj := {γ(t)
j ∈ Γj |b(t)i,j > τ}, where τ ∈ [0, 1] is a given

threshold. If there exists a lower bound C ∈ [0, 1] such that for all γ ∈ Γτj :∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ) ≥ C
∑

x∈XU

P (Y = i|X = x)I(vQ(x, j) < γ),

(15)

then, the following inequality holds:

[U0K
]i,j −RU (BQ, i, j) ≤

1− C
C

RU (BQ, i, j) + ri,j

(
1

γ∗j
− 1

)
,

where

• γ∗j := sup{γ(t)
j ∈ Γτj } is the highest vote which satisfies b

(t)
i,j > τ , and

• ri,j :=
∑

x∈XU
P (Y = i|X = x)vQ(x, j)I(BQ(x) = j)I(vQ(x, j) > γ∗j )/ui

corresponds to the average of j-votes in the class i that greater than γ∗j
and on which the Bayes classifier makes the conditional mistake.

Proof. First, it can be proved that for all x ∈ XU , for all (i, j) ∈ {1, . . . ,K}2,
the following inequality holds:

RU (BQ, i, j) ≥
1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ∗)

+
1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

+ ri,j , (16)

where γ∗ := sup{γ ∈ Γj |
∑

x∈XU
P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) =

γ)/ui > τ}. We prove this result in Lemma A.2 in Appendix. Now, taking into
account Eq. (16) and Eq. (15) we deduce the following:

RU (BQ, i, j) ≥
C

ui

∑
x∈XU

P (Y = i|X = x)I(vQ(x, j) < γ∗) +
1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

+ ri,j

=C I
(≤,<)
i,j (0, γ∗) +

1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

+ ri,j . (17)
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By definition of U0K
we have, for all (i, j) ∈ {1, . . . ,K}2,

[U0K
]i,j ≤ I

(≤,<)
i,j (0, γ∗) +

1

γ∗
⌊
Ki,j −M<

i,j(γ
∗)
⌋

+
. (18)

Subtracting Eq. (17) from Eq. (18) we obtain:

[U0K
]i,j −RU (BQ, i, j) ≤ (1− C)I

(≤,<)
i,j (0, γ∗)

+
1

γ∗

(⌊
Ki,j −M<

i,j(γ
∗)
⌋

+
−
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

)
− ri,j .

We can notice that for all a, b ∈ R+ : b− bb− ac+ ≤ a. Then, we have:

[U0K
]i,j −RU (BQ, i, j) ≤ (1− C)I

(≤,<)
i,j (0, γ∗) + ri,j

(
1

γ∗
− 1

)
. (19)

Also, from Eq. (17) one can derive:

I
(≤,<)
i,j (0, γ∗) ≤ 1

C

(
RU (BQ, i, j)−

1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+
− ri,j

)
≤ RU (BQ, i, j)

C
.

(20)

Taking into account Eq. (19) and Eq. (20), we infer:

[U0K
]i,j −RU (BQ, i, j) ≤

1− C
C

RU (BQ, i, j) + ri,j

(
1

γ∗
− 1

)
.

This proposition states that if Eq. (15) holds, the difference between the
transductive Bayes conditional risk and its upper bound does not exceed an
expression that depends on a constant C and a threshold τ . When the majority
vote classifier makes most of its mistake for the class j on observations with a
low value of vQ(x, j), with a reasonable choice of τ , ri,j and γ∗j are decreasing.
This also implies that Eq. (15) accepts a high value C (close to 1) and the
bound will be tighter. The closer our framework to the deterministic one, the
closer ri,j will be to 0 ( in the deterministic case, τ can be set to 0, so ri,j will
be 0), so the bound becomes tight. Although our bound is tight only under
the condition of making mistakes on low prediction votes, the assumption is
reasonable from the theoretical point of view, since if for some observation the
Bayes classifier gives a relatively high vote to the class j, we expect that the
observation is most probably from this class and not from the class i. From the
practical point of view, this assumption requires the learning model to be well
calibrated (Gebel, 2009).
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4.4 Multi-class Self-learning Algorithm

In this section, we describe an application of results obtained in Section 4.1 for
learning on partially-labeled data. For this, we consider a self-learning algorithm
(Amini and Usunier, 2015), which is a semi-supervised approach that performs
augmentation of the labeled set by pseudo-labeling unlabeled examples.

The algorithm starts from a supervised base classifier initially trained on
available labeled examples. Then, it iteratively assigns pseudo-labels at each
iteration to those unlabeled examples that have a confidence score above a
certain threshold. The pseudo-labeled examples are then included in the training
set, and the classifier is retrained. The process is repeated until no examples
for pseudo-labeling are left.

The central question of applying the self-learning algorithm in practice is
how to choose the threshold. Intuitively, the threshold can manually be set to a
very high value, since only examples with a very high degree of confidence will
be pseudo-labeled in this case. However, the confidence measure is biased by the
small labeled set, so every iteration of the self-learning may still induce an error
and shift the boundary in the wrong direction. In addition, the fact that a large
number of iterations makes the algorithm computationally expensive drives us
to choose the threshold carefully.

To overcome this problem, we extend the strategy proposed by Amini et al.
(2008) to the multi-class setting. We consider the majority vote as the base
classifier and the prediction vote as an indicator of confidence. Given a threshold
vector θ, we introduce the conditional Bayes error rate RU|θ(BQ), defined in
the following way:

RU|θ(BQ) :=
RU∧θ(BQ)

π(vQ(x, k) ≥ θk)
, (21)

where π(vQ(x, k) ≥ θk) :=
∑

x∈XU
1vQ(x,k)≥θk/u and k := BQ(x). The numera-

tor reflects the proportion of mistakes on the unlabeled set when the threshold is
equal to θ, whereas the denominator computes the proportion of unlabeled ob-
servations with the vote larger than the threshold for the predicted class. Thus,
we propose to find the threshold that yields the minimal value of RU|θ(BQ),
making a trade-off between the error we induce by pseudo-labeling and the
number of pseudo-labeled examples. In Algorithm 1 we summarize our algo-
rithm, which is further denoted by MSLA3.

To evaluate the transductive error, we bound the numerator of Eq. (21)
by Corollary 4.4. However, the bound can practically be computed only with
assumptions, since the posterior probabilities P (Y = c|X = x) for unlabeled
examples are not known. In this work, we approximate the posterior P (Y =
c|X = x) by vQ(x, c) of the base classifier trained on labeled examples only (the
initial step of MSLA). Although this approximation is optimistic, by formulating
the bound as probabilistic we keep some chances for other classes so the error
of the supervised classifier can be smoothed. However, it must be borne in

3The code source of the algorithm can be found at https://github.com/vfeofanov/

trans-bounds-maj-vote.
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mind that the hypothesis space should be diverse enough so that the entropy
of (vQ(x, c))Kc=1 would not be always zero, and the errors are made mostly
on low prediction votes. In our experiments, as the base classifier we use the
random forest (Breiman, 2001) that aggregates predictions from trees learned
on different bootstrap samples. In Appendix C.1, we validate the proposed
approximation by empirically comparing it with the case when the posterior
probabilities are set to 1/K, i.e., when we treat all classes as equally probable.

Algorithm 1 Multi-class self-learning algorithm (MSLA)

Input:
Labeled observations ZL
Unlabeled observations XU
Initialisation:
A set of pseudo-labeled instances, ZP ← ∅
A classifier BQ trained on ZL
repeat

1. Compute the vote threshold θ∗ that minimizes the conditional Bayes
error rate:

θ∗ = argmin
θ∈(0,1]K

RU|θ(BQ). (?)

2. S ← {(x, y′)|x ∈ XU ; [vQ(x, y′) ≥ θ∗y′ ] ∧ [y′ = argmaxc∈ vQ(x, c)]}
3. ZP ← ZP ∪ S, XU ← XU \ S
4. Learn a classifier BQ with the following loss function:

L(BQ, ZL,ZP) =
l + |ZP |

l
L(BQ, ZL) +

l + |ZP |
|ZP |

L(BQ,ZP)

until XU or S are ∅
Output: The final classifier BQ

Similarly to the work of Amini et al. (2008), in practice, to find an optimal
θ∗ we perform a grid search over the hypercube (0, 1]K . The same algorithm is
used for computing the optimal γ∗ that provides the value of an upper bound for
the conditional risk (see Theorem 4.2). In contrast to the binary self-learning,
the direct grid search in the multi-class setting costs O

(
RK
)
, where R is the

sampling rate of the grid. As

RU|θ(BQ) =

K∑
j=1

R
(j)
U∧θ(BQ)∑K

c=1
1
u

∑
x∈XU

1vQ(x,c)≥θc1BQ(x)=c

≤
K∑
j=1

R
(j)
U∧θ(BQ)

1
u

∑
x∈XU

1vQ(x,j)≥θj1BQ(x)=j

≤
K∑
j=1

R
(j)
U∧θ(BQ)

π{(vQ(x, j) ≥ θj) ∧ (BQ(x) = j)}
, (∗)

whereR
(j)
U∧θ(BQ) =

∑K
i=1 uiRU∧θ(BQ, i, j)/u, the sum might be minimized term
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by term, tuning independently each component of θ. This replaces the K-
dimensional minimization task by K tasks of 1-dimensional minimization.

5 Probabilistic C-Bound with Imperfect Labels

The transductive bound (TB) can be regarded as a first-order bound, since it
is linearly dependent on the classifier’ votes, so it does not take into account
the correlation between hypotheses. In addition, despite its application for
minimization of the error induced by self-learning, the obtained pseudo-labels
may be still erroneous, and we do not know how to evaluate the classification
error in this noisy case. In this section, we overcome these two issues by deriving
a new probabilistic C-bound in the presence of imperfect labels.

5.1 C-Bound in the Probabilistic Setting

Lacasse et al. (2007) proposed to upper bound the Bayes error by taking into
account the mean and the variance of the prediction margin, which, we re-
call Eq. (2), is defined as vQ(x, y) −maxc∈Y\{y} vQ(x, c). A similar result was
obtained in a different context by Breiman (2001). Laviolette et al. (2017)
extended this bound to the multi-class case.

Below, we derive their C-bound in the probabilistic setting. Now, we consider
the generalization error as an error measure, which is defined in the probabilistic
setting as follows:

R(BQ) := EP (X)

∑
c∈{1,...,K}
c6=BQ(x)

P (Y = c|X = x) = EP (X)[1− P (Y = BQ(x)|X = x)].

Theorem 5.1. Let M be a random variable such that [M |X = x] is a discrete
random variable that is equal to the margin MQ(x, c) with probability P (Y =
c|X = x), c = {1, . . . ,K}. Let µM1 and µM2 be the first and the second statistical
moments of the random variable M , respectively. Then, for all choice of Q on
a hypothesis space H, and for all distributions P (X) over X and P (Y |X) over
Y, such that µM1 > 0, we have:

R(BQ) ≤ 1− (µM1 )2

µM2
. (CB)

Proof. At first, we show that R(BQ) = P (M ≤ 0). For a fixed x, one get:

P (M ≤ 0|X = x) =

K∑
c=1

P (Y = c|X = x)I(MQ(x, c) ≤ 0) =
∑

c∈{1,...,K}
c 6=BQ(x)

P (Y = c|X = x).

Applying the total probability law, we obtain:

P (M ≤ 0) =

∫
X
P (M ≤ 0|X = x)P (X = x)dx = EP (X)P (M ≤ 0|X = x) = R(BQ).

(22)
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By applying the Cantelli-Chebyshev inequality (Lemma B.1 in Appendix), we
deduce:

P (M ≤ 0) ≤ µM2 − (µM1 )2

µM2 − (µM1 )2 + (µM1 )2
= 1− (µM1 )2

µM2
. (23)

Combining Eq. (22) and Eq. (23) gives the bound.

Thus, the probabilistic C-bound allows to bound the generalization error of
the Bayes classifier when examples are provided with probabilistic labels. Note
that when for every example, only one label is possible, the bound comes back
to the usual deterministic case.

The main advantage of C-bound is the involvement of the second margin
moment, which can be related to correlations between hypotheses’ predictions
(Lacasse et al., 2007).

5.2 Mislabeling Error Model

The self-learning algorithm, which was introduced in Section 4.4, supplies the
unlabeled examples with pseudo-labels that are potentially erroneous. In this
section, we consider a mislabeling error model to explicitly take into account
this issue.

We consider an imperfect output Ŷ , which has a different distribution from
the true output Y . The label imperfection is summarized through the mislabel-
ing matrix P = (pj,c)1≤j,c≤K , defined by:

P (Ŷ = j|Y = c) := pj,c ∀(j, c) ∈ {1, . . . ,K}2, (24)

where
∑K
j=1 pj,c = 1. Additionally, we assume that Ŷ does not influence the

true class distribution: P (X|Y, Ŷ ) = P (X, Y ). This implies that

P (Ŷ = j|X = x) =

K∑
c=1

pj,cP (Y = c|X = x). (25)

This class-related model is a common approach to deal with the label imperfec-
tion (Chittineni, 1980; Amini and Gallinari, 2003; Natarajan et al., 2013; Scott,
2015).

At first, we derive a bound that connects the error of the true and the
imperfect label in misclassifying a particular example x ∈ X . We denote

r(x) =
∑

c∈{1,...,K}
c6=BQ(x)

P (Y = c|X = x), r̂(x) =
∑

c∈{1,...,K}
c 6=BQ(x)

P (Ŷ = c|X = x).
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Theorem 5.2. Let P be the mislabeling matrix, and assume that pi,i > pi,j , ∀i, j ∈
{1, . . . ,K}2. Then, for all choice of Q on a hypothesis space H we have, for
x ∈ X ,

r(x) ≤ r̂(x)

δ(x)
− 1− α(x)

δ(x)
, (26)

with δ(x) := pBQ(x),BQ(x) −maxj∈Y\{BQ(x)} pBQ(x),j and α(x) := pBQ(x),BQ(x).

Proof. First, from the definition of r̂(x) and applying Eq. (25) we obtain that

r̂(x) = 1− P (Ŷ = BQ(x)|X = x) = 1−
K∑
j=1

pBQ(x),jP (Y = j|X = x)

= 1− pBQ(x),BQ(x)P (Y = BQ(x)|X = x)−
K∑
j=1

j 6=BQ(x)

pBQ(x),jP (Y = j|X = x)

One can notice that

K∑
j=1

j 6=BQ(x)

pBQ(x),jP (Y = j|X = x) ≤ max
j∈Y\{BQ(x)}

pBQ(x),j

K∑
j=1

j 6=BQ(x)

P (Y = j|X = x)

= max
j∈Y\{BQ(x)}

pBQ(x),j(1− P (Y = BQ(x)|X = x)).

Finally, we infer the following inequality:

r̂(x) ≥ (pBQ(x),BQ(x) − max
j∈Y\{BQ(x)}

pBQ(x),j)(1− P (Y = BQ(x)|X = x)) + 1− pBQ(x),BQ(x)

= δ(x)r(x) + 1− α(x). (27)

Taking into account the assumption that pi,i > pi,j , ∀i, j ∈ {1, . . . ,K}2, we
deduce that δ(X) > 0, which concludes the proof.

This theorem gives us insights on how the true error rate can be bounded
given the error rate of the imperfect label and the mislabeling matrix. With the
quantities δ(x) and α(x), we perform a correction of r̂(x). Note that when there
is no mislabeling, the left and right sides of Eq. (26) are equal, since α(x) = 1
and δ(x) = 1 in this case.

Note that this theorem holds also for a more general case when correction
probabilities depend on the example x. In this case, all probabilities pi,j are

replaced by pxi,j := P (Ŷ = i|Y = j,X = x). Since it is harder to estimate pxi,j
compared to pi,j , we stick to consider the class-related model described in Eq.
(25).

In the theorem, the mislabeling matrix is assumed given, while in practice
it has to be estimated. Since the number of matrix entries grows quadratically
with the increase of K, a direct estimation of the true posterior probabilities
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from Eq. (25) may be more affected by the estimation error than the bound
itself as the latter needs to know only 2K entries. We give more details about
estimation of the mislabeling matrix in Section 7.

The bound can be compared with a bound derived in Chittineni (1980, Eq.
(3.14), p. 284) for the optimal Bayes classifier (maximum a-posteriori rule). It

is shown that r(x) ≤ 1− 1−r̂(x)
β , where β = maxi=1,...,K

(∑K
j=1 pi,j

)
. One can

notice that the regularizer β is constant with respect to x, so the penalization of
the error rate r̂(x) does not depend on the label the classifier predicts. Another
limitation is that the bound assumes that the Bayes classifier is optimal.

The assumption of Theorem 5.2 requires that the diagonal entries of the
mislabeling matrix are the largest elements in their corresponding columns,
which means that the imperfect label is reasonably correlated with the true
label. However, in practice, the assumption may not hold, so the theorem is not
applicable. To overcome this, it can be relaxed by considering λ > 0 such that
λ+ δ(x) > 0, and so we get a bound for all choices of Q on a hypothesis space
H:

r(x) ≤ r̂(x)

λ+ δ(x)
− 1− λ− α(x)

λ+ δ(x)
. (28)

When δ(x) is close to 0, it also avoids the bound to become arbitrarily large.
The use of this bound is illustrated in Section C.3 of Appendix.

5.3 C-Bounds with Imperfect Labels

Based on Theorem 5.2, we bound the generalization error R(BQ), which is the
expectation of r(X). By taking expectation in Eq. (26), we obtain that

R(BQ) = EXr(X) ≤ EX
r̂(X)

δ(X)
− EX

1− α(X)

δ(X)
. (29)

One can see that for every x, r̂(x) is multiplied by a positive weight 1/δ(X) > 0,
so the first term of the right-hand side is a weighted generalization error of the
imperfect label. To cope with this, we derive a weighted C-bound by proposing
the next theorem.

Theorem 5.3. Let M̂ be a random variable such that [M̂ |X = x] is a dis-
crete random variable that is equal to the margin M̂Q(x, i) with probability

P (Ŷ = i|X = x), i = {1, . . . ,K}. Assume that every diagonal entry of the
mislabeling matrix P is the largest element in the corresponding column, i.e.,
pi,i > pi,j , ∀i, j ∈ {1, . . . ,K}2. Then, for all choice of Q on a hypothesis space
H, and for all distributions P (X) over X and P (Y |X) over Y, we have:

R(BQ) ≤ ψP −

(
µM̂,P

1

)2

µM̂,P
2

, (CBIL)

if µM̂P
1 > 0, where
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• ψP := EX
α(X)
δ(X) with δ and α defined as in Theorem 5.2,

• µM̂,P
1 :=

∫
Rd+1

m
δ(x)P (M̂ = m,X = x)dxdm is the weighted 1st margin

moment,

• µM̂,P
2 :=

∫
Rd+1

m2

δ(x)P (M̂ = m,X = x)dxdm is the weighted 2nd margin
moment.

Proof. At first, let us introduce a normalization factor ωP defined as follows:

ωP := EX
1

δ(X)
=

∫
Rd+1

P (M̂ = m,X = x)

δ(x)
dxdm.

Remind that r̂(x) = P (M̂ ≤ 0|X = x). Then, we can write:

EX
r̂(X)

δ(X)
=

∫
Rd

1

δ(x)
P (M̂ ≤ 0|X = x)P (X = x)dx =

∫ 0

−∞

∫
Rd

P (M̂ = m,X = x)

δ(x)
dxdm

= ωP

∫ 0

−∞

∫
Rd P (M̂ = m,X = x)/δ(x)dx∫

Rd+1 P (M̂ = m,X = x)/δ(x)dxdm
dm = ωPP (M̂ω < 0),

(30)

where the last equality is given by a random variable M̂ω coming from the
density fω defined as the expression inside the integral in Eq. (30).

We further notice that the weighted first and second moments can be repre-
sented as:

µM̂,P
1 =

∫
Rd+1

m

δ(x)
P (M̂ = m,X = x)dxdm = ωPµ

M̂ω
1 ,

µM̂,P
2 =

∫
Rd+1

m2

δ(x)
P (M̂ = m,X = x)dxdm = ωPµ

M̂ω
2 .

From this, we also obtain that var(Mω) =
(
µM̂,P

2 /ωP

)
−
(
µM̂,P

1 /ωP

)2

. Then,

using the Cantelli-Chebyshev inequality (Lemma B.1) with λ = µ
M̂f

1 = µM̂,P
1 /ωP

we deduce the following inequality:

P (M̂ω < 0) ≤

(
µM̂,P

2 /ωP

)
−
(
µM̂,P

1 /ωP

)2

(
µM̂,P

2 /ωP

)
−
(
µM̂,P

1 /ωP

)2

+
(
µM̂,P

1 /ωP

)2 = 1−

(
µM̂,P

1

)2

ωPµ
M̂,P
2

.

(31)

Combining Eq. (31) and Eq. (29) we infer (CBIL):

R(BQ) ≤ EX
r̂(x)

δ(x)
− EX

1− α(x)

δ(x)
= ωPP (M̂ω < 0)− ωP + ψP ≤ ψP −

(
µM̂,P

1

)2

µM̂,P
2

.

19



Given data with imperfect labels, the direct evaluation of the generalization
error rate may be biased, leading to an overly optimistic evaluation. Using the
mislabeling matrix P we derive a more conservative C-bound, where the error
of x is penalized by the factor 1/δ(x). When there is no mislabeling, ψP = 1,

µM̂,P
1 and µM̂,P

2 are equivalent to µM̂1 and µM̂2 , so we obtain the regular C-bound
(CB).

In particular, this general result can be used to evaluate the error rate in the
semi-supervised setting when mislabeling arises from pseudo-labeling of unla-
beled examples via self-learning. Comparing with the transductive bound (TB)
obtained as a corollary of Theorem 4.2, (CBIL) directly upper bounds the error
rate, so it will be tighter in most of cases. Particularly, it can be noticed that
the value of (TB) is growing with the increase of the number of classes. Note
that there exists other attempts to evaluate the C-bound in the semi-supervised
setting. In the binary case, Lacasse et al. (2007); Roy et al. (2011) estimated
the second margin moment using additionally unlabeled data by expressing it
via disagreement of hypotheses. However, this holds for the binary case only.

In this theorem, we have combined the mislabeling bound (26) with the
supervised multi-class C-bound (Laviolette et al., 2017), however, another pos-
sibility could be to combine with the bound based on the second-order Markov’s
inequality (Masegosa et al., 2020). As pointed out by Masegosa et al. (2020),
the latter can be regarded as a relaxation of the C-bound, but it is easier to
estimate from data in practice. Note that the tightest bound does not always
imply the lowest error, so the use of C-bound in model selection tasks may be
more advantageous as it involves both the individual strength of hypotheses and
correlation between their errors, while the bound of Masegosa et al. (2020) is
based on the error correlation only.

5.4 PAC-Bayesian Theorem for C-Bound Estimation

When the margin mean, the margin variance and the mislabeling matrix are
empirically estimated from data, evaluation of (CBIL) may be optimistically
biased. In this section, we analyze the behavior of the estimate with respect
to the sample size. To achieve that, we use the PAC-Bayesian theory initiated
by McAllester (1999, 2003) to derive a Probably Approximately Correct bound
defined below.

Theorem 5.4. Under the notations of Theorem 5.3, for any set of classifiers
H, for any prior distribution P on H and any ε ∈ (0, 1], with a probability at
least 1 − ε over the choice of the sample of size n = l + u, for every posterior

distribution Q over H, if µM̂1 > 0 and δ̃(x) > 0, we have:

R(BQ) ≤ ψ̃ − µ̃2
1

µ̃2
, (32)
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where
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1
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u
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√
2

u
ln

2
√
u

ε

δ̃(x) = δ̂(x)−

√
1

2lcx
ln

2
√
lcx
ε
−

√
1

2ljx
ln

2
√
ljx
ε

, with cx := BQ(x), jx := argmin
j∈Y\{cx)}

lj ,

α̃(x) = α̂(x) +

√
1

2lcx
ln

2
√
lcx
ε

,

and where δ̂(x) and α̂(x) are empirical estimates respectively of δ(x) and α(x)
based on the available labeled set, KL(Q ‖ P ) is the Kullback-Leibler divergence

between Q and P , and lj =
∑l
i=1 I(yj = j)/l is the proportion of the labeled

training examples from the true class j.

The proof is a combination of Propositions B.5, B.7 and B.9 that are deferred
to Appendix B.

Thus, by using Eq. (32) we additionally penalize the C-bound by the sample
size and the divergence between Q and P . As u grows, the penalization becomes

less severe, so µ̃1 and µ̃2 are close to µM̂1 and µM̂2 . Similarly, δ̃(x) and α̃(x)

are closer to δ̂(x) and α̂(x) with the increase of the number examples used to
estimate the mislabeling matrix, which we take l for the sake of simplicity. Note
that, in contrast to the supervised case (Laviolette et al., 2017, Theorem 3), B1

and B2 can have a drastic influence on the bound’s value, when δ̃(x) is close to
0, which motivates in practice to use the λ-relaxation given by Eq. (28).

The obtained bound may be used to estimate the Bayes error from data,
with the pseudo-labeled unlabeled examples serving as a hold-out set for esti-
mating the margin moments, and the labeled examples serving as a hold-out
set for estimating the mislabeling matrix. In the case of the random forest, the
latter can be performed in the out-of-bag fashion as in (Thiemann et al., 2017;
Lorenzen et al., 2019). However, the bound does not appear tighter in practice
compared to the supervised case (Laviolette et al., 2017) due to the additional
penalization on estimation of the mislabeling matrix. Making this bound tighter
could be a good direction for future work. Nevertheless, when the focus is set
on model selection, a common choice is to simply use an empirical estimate of
the C-bound as an optimization criterion (Bauvin et al., 2020).
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6 Experimental Results

In this section, we describe numerical experiments that was performed to vali-
date our proposed framework. At first, we test in practice the multi-class self-
learning algorithm (denoted by MSLA) described in Section 4.4 by comparing its
ability to learn on partially labeled data with other classification algorithms.
Then, we illustrate the proposed (CBIL) on real data sets and analyze its be-
havior. All experiments were performed on a cluster with an Intel(R) Xeon(R)

CPU E5-2640 v3 at 2.60GHz, 32 cores, 256GB of RAM, the Debian 4.9.110-3

x86 64 OS.

6.1 Experimental Setup

Experiments are conducted on publicly available data sets (Dua and Graff, 2017;
Chang and Lin, 2011; Xiao et al., 2017). Since we are interested in the practical
use of our approach in the semi-supervised context, we would like to see if it
has good performance when l � u. Therefore, we do not use the train/test
splits that are proposed by data sources. Instead, we propose our own splits
that makes a situation closer to the semi-supervised context. Each experiment
is conducted 20 times, by randomly splitting an original data set on a labeled
and an unlabeled parts keeping fixed their respective size at each iteration. The
reported performance results are averaged over the 20 trials. We evaluate the
performance as the accuracy score over the unlabeled training set (ACC-U).

In all our experiments, we consider the Random Forest algorithm (Breiman,
2001) (denoted by RF) with 200 trees and the maximal depth of trees as the
majority vote classifier with the uniform posterior distribution. For an observa-
tion x, we evaluate the vector of class votes {v(x, i)}Ki=1 by averaging over the
trees the vote given to each class by the tree. A tree computes a class vote as
the fraction of training examples in a leaf belonging to a class.

Experiments are conducted on 11 real data sets. The associated applications
are image classification with the Fashion data set, the Pendigits and the
MNIST databases of handwritten digits; a signal processing application with the
SensIT data set for vehicle type classification and the human activity recognition
HAR database; speech recognition using the Vowel, the Isolet and the Letter

data sets; document recognition using the Page Blocks database; and finally
applications to bioinformatics with the Protein and DNA data sets. The main
characteristics of these data sets are summarized in Table 1.

The proposed MSLA that automatically finds the threshold by minimizing the
conditional Bayes error rate, is compared with the following baselines:

• a fully supervised RF trained using only labeled examples. The approach
is obtained at the initialization step of MSLA and once learned it is directly
applied to predict the class labels of the whole unlabeled set;

• the scikit-learn implementation (Pedregosa et al., 2011) of the graph based,
label spreading algorithm (Zhou et al., 2004) denoted by LS;
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Data set # of labeled examples, # of unlabeled examples, Dimension, # of classes,
l u d K

Vowel 99 891 10 11
Protein 129 951 77 8

DNA 31 3155 180 3
PageBlocks 1094 4379 10 5

Isolet 389 7408 617 26
HAR 102 10197 561 6

Pendigits 109 10883 16 10
Letter 400 19600 16 26
Fashion 175 69825 784 10
MNIST 175 69825 784 10
SensIT 49 98479 100 3

Table 1: Characteristics of data sets used in our experiments ordered by the
size of the training set (n = l + u).

• the one-versus-all extension of a transductive support vector machine
Joachims (1999) using the Quasi-Newton scheme. The approach was pro-
posed by Gieseke et al. (2014) ans is further denoted as QN-S3VM4;

• a semi-supervised extension of the linear discriminant analysis Semi-LDA,
which is based on the contrastive pessimistic likelihood estimation pro-
posed by Loog (2015);

• a semi-supervised extension of the random forest DAS-RF proposed by
Leistner et al. (2009) where the classifier is repeatedly re-trained on the
labeled and all the unlabeled examples with pseudo-labels optimized via
deterministic annealing;

• the multi-class extension of the classical self-learning approach (denoted by
FSLA) described in Tür et al. (2005) with a fixed prediction vote threshold;

• a self-learning approach (denoted by CSLA) where the threshold is defined
via curriculum learning by taking it as the (1 − t · ∆)-th percentile of
the prediction vote distribution at the step t = 1, 2, . . . (Cascante-Bonilla
et al., 2020).

As the size of the labeled training examples |ZL| is small, the hyperpa-
rameter tuning can not be performed properly. At the same time, the per-
formance of baselines may be sensitive to some of their hyperparameters. For
this reason, we compute LS, QN-S3VM, Semi-LDA, DAS-RF on a grid of param-
eters’ values, and then choose a hyperparameter for which the performance
is the best in average on 20 trials. We tune the RBF kernel parameter σ ∈
{10, 1.5, 0.5, 10−1, 10−2, 10−3} for LS, the regularization parameters (λ, λ′) ∈
{10−1, 10−2, 10−3}2 for QN-S3VM, the learning rate α ∈ {10−4, 10−3, 10−2} for

4The source code for the binary QN-S3VM is available at http://www.fabiangieseke.de/

index.php/code/qns3vm.
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Data set RF LS QN-S3VM Semi-LDA DAS-RF FSLA θ=0.7 CSLA∆=1/3 MSLA

Vowel .586± .028 .602± .026 .208↓ ± .029 .432↓ ± .029 .587 ± .028 .531↓ ± .034 .576↓ ± .031 .586 ± .026

Protein .764↓ ± .032 .825± .028 .72↓ ± .034 .842 ± .029 .768↓ ± .036 .687↓ ± .036 .771↓ ± .035 .781↓ ± .034

DNA .693↓ ± .074 .584↓ ± .038 .815± .025 .573↓ ± .037 .693↓ ± .083 .521↓ ± .095 .671↓ ± .112 .702↓ ± .082

PageBlocks .965± .003 .905↓ ± .004 .931↓ ± .003 .935↓ ± .009 .965 ± .003 .964 ± .004 .965 ± .003 .966 ± .002

Isolet .854↓ ± .016 .727↓ ± .01 .652↓ ± .016 .787↓ ± .019 .859↓ ± .018 .7↓ ± .04 .843↓ ± .021 .875 ± .014

HAR .851± .024 .215↓ ± .05 .78↓ ± .02 .743↓ ± .043 .852 ± .024 .81↓ ± .041 .841 ± .029 .854 ± .026

Pendigits .863↓ ± .022 .916± .013 .675↓ ± .022 .824↓ ± .012 .872↓ ± .023 .839↓ ± .036 .871↓ ± .029 .884↓ ± .022

Letter .711± .011 .664↓ ± .01 .064↓ ± .013 .589↓ ± .016 .718 ± .012 .651↓ ± .015 .72 ± .013 .717 ± .013

Fashion .718± .022 NA NA .537↓ ± .027 .722 ± .023 .64↓ ± .04 .713 ± .026 .723 ± .023

MNIST .798↓ ± .015 NA NA .423↓ ± .029 .822↓ ± .017 .705↓ ± .055 .829↓ ± .02 .857 ± .013

SensIT .723± .022 NA NA .647↓ ± .042 .723 ± .022 .692↓ ± .023 .713 ± .024 .722 ± .021

Table 2: Classification performance on different data sets described in Table
1. The performance is computed using the accuracy score on the unlabeled
training examples (ACC-U). The sign ↓ shows if the performance is statistically
worse than the best result on the level 0.01 of significance. NA indicates the case
when the time limit was exceeded.

Semi-LDA, the initial temperature T0 ∈ {10−3, 5 · 10−3, 10−2} for DAS-RF. Other
hyperparameters for these algorithms are left to their default values. Partic-
ularly, in DAS-RF the strength parameter and the number of iterations are re-
spectively set to 0.1 and 10.

While the aforementioned parameters are rather data-dependent, the choice
of θ for FSLA and ∆ for CSLA depend more on what prediction vote distribution
the base classifier outputs. After manually testing different values, we have
found that FSLAθ=0.7 and CSLA∆ = 1/3 are good choices for the random forest.
For FSLA, we terminate the learning procedure as soon as the algorithm makes
10 iterations, which reduces the computation time and may also improve the
performance, since, in this case, the algorithm is less affected by noise. Cascante-
Bonilla et al. (2020) used for CSLA a slightly other architecture for self-learning,
where the set of selected pseudo-labeled examples included just for one iteration
(like if in Algorithm 1 Step 3 would be replaced by ZP ← S). In our context, we
have found that the performance of CSLA is identical for both two architectures.

6.2 Illustration of MSLA

In our setup, a time deadline is set: we stop computation for an algorithm if one
trial takes more than 4 hours. Table 2 summarizes results obtained by RF, LP,
QN-S3VM, Semi-LDA, DAS-RF, FSLA, CSLA and MSLA. We used bold face to indicate
the highest performance rates and the symbol ↓ indicates that the performance
is significantly worse than the best result, according to Mann-Whitney U test
(Mann and Whitney, 1947) used at the p-value threshold of 0.01.

From these results it comes out that

• in 5 of 11 cases, the MSLA performs better than its opponents. On data
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sets Isolet and MNIST it significantly outperforms all the others, and
it significantly outperforms the baseline RF on Isolet, Pendigits and
MNIST (6% improvement);

• the LS and the QN-S3VM did not pass the scale over larger data sets
(Fashion, MNIST and SensIT), while the MSLA did not exceeded 2 min-
utes per trial on these data sets (see Table 4);

• the performance of LS and Semi-LDA performance varies greatly on differ-
ent data sets, which may be caused by the topology of data. In contrast,
MSLA has more stable results over all data sets as it is based on the pre-
dictive score, and the RF is used as the base classifier;

• since the QN-S3VM is a binary classifier by nature, its one-versus-all ex-
tension is not robust with respect to the number of classes. This can be
observed on Vowel, Isolet and Letter, where the number of classes is
high;

• from our observation, both LS and QN-S3VM are highly sensitive to the
choice of the hyperparameters. However, it is not very clear whether
these hyperparameters can be properly tuned given a insufficient number
of labeled examples. The same concern is applied to all the other semi-
supervised baselines, while MSLA does not require any particular tuning
since it finds automatically the threshold θ;

• while the approach proposed by Loog (2015) always guarantees an im-
provement of the likelihood compared to the supervised case, we have ob-
served that the classification accuracy is not always improved for Semi-LDA
and may even degrade over the supervised linear discriminant analysis;

• compared to the fully supervised approach, RF, the use of pseudo-labeled
unlabeled training data (in DAS-RF, FSLA, CSLA or MSLA) may gener-
ally give no benefit or even degrade performance in some cases (Vowel,
PageBlocks, SensIT). This may be due to the fact that the learning hy-
potheses are not met regarding the data sets where this effect is observed;

• although for DAS-RF the performance is usually not degraded when T0 is
properly chosen, it has rather little improvement compared to RF. The
performance of FSLA degrades most of the time, while degradation for
CSLA is observed on 6 data sets. The latter suggests that the choice of the
threshold for pseudo-labeling is crucial and challenging in the multi-class
framework. Using the proposed criterion based on Eq. (21), we can find
the threshold efficiently;

• from the results it can be seen that self-learning is also sensitive to the
choice of the initial classifier. On some data sets, the number of labeled
examples might be too small leading to a bad initialization of the first
classifier trained over the labeled set. This implies that the initial votes
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are biased, so even with a well picked threshold we do not expect a great
increase in performance (see Appendix C.1 for more details).

Figure 1: Classification accuracy with respect to the proportion of unlabeled
examples for the MNIST data set (a subsample of 3500 examples). On the graph,
dots represent the average performance on the unlabeled examples over 20 ran-
dom splits. For simplicity of illustration, the other considered algorithms are
not displayed.

We also analyze the behavior of the various algorithms for growing initial
amounts of labeled data in the training set. Figure 1 illustrates this by showing
the accuracy on a subsample of 3500 observations from MNIST of RF, QN-S3VM,
FSLAθ=0.7 and MSLA with respect to the percentage of the labeled training exam-
ples. In this graph, the performance of LS is not depicted, since it is significantly
lower compared to the other methods under consideration. As expected, all per-
formance curves increase monotonically with respect to the additional labeled
data. When there are sufficient labeled training examples, MSLA, FSLA and RF

actually converge to the same accuracy performance, suggesting that the labeled
data carries out sufficient information and no additional information could be
extracted from unlabeled examples.

Further, we present a comparison of the learning algorithms under consider-
ation by analyzing their complexity. The time complexity of the random forest
RF is O(Tdl̃ log2 l̃) (Louppe, 2014), where T is the number of decision trees in
the forest and l̃ ≈ 0.632 · l is the number of training examples used for each
tree. Since RF is employed in DAS-RF and self-learning, the time complexity of
DAS-RF, FSLA and CSLA is O(CTdñ log2 ñ), where C is the number of times RF

has been learned, ñ ≈ 0.632 · n. In our experimental setup, C = 11 for FSLA

and DAS-RF, and C = 1/∆ + 1 = 4 for CSLA.
The time required for finding the optimal threshold at every iteration of

the MSLA is O(K2R2n), where R is the sampling rate of the grid. From this
we deduce that the complexity of MSLA is O(C max(Tdn log2 n,K2R2n)). As
n grows, the complexity is written as O(dn log2 n), since C, T,R are constant.
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This indicates a good scalability of all considered pseudo-labeling methods for
large-scale data as they also have a memory consumption proportional to nd,
so the computation can be performed on a regular PC even for the large-scale
applications.

In the label spreading algorithm, an iterative procedure is performed, where
at every step the affinity matrix is computed. Hence, the time complexity of the
LS is O(Mn2d), where M is the maximal number of iterations. From our obser-
vation, the convergence of LS is highly influenced by the value of σ and the data
topology. The time complexity of the QN-S3VM is O(n2d) (Gieseke et al., 2014).
Both algorithms suffer from high run-time for large-scale applications. Since LS

and QN-S3VM evaluate respectively the affinity matrix and the kernel matrix of
size n by n, these algorithms have also large space complexity proportional to
n2. From our observation, for the large-scale data (Fashion, MNIST, SensIT)
the maximal resident set size5 of LS and QN-S3VM may reach up to 200GB of
RAM, which is practically infeasible with lack of resources.

Finally, the time complexity of Semi-LDA is O(M max(nd2, d3)), where M
is the maximal number of iterations and O(max(nd2, d3)) is the complexity of
the linear discriminant analysis assuming n > d (Cai et al., 2008), and the
space complexity is O(nd). The approach pass the scale well with respect to the
sample size, but may significantly slow down in the case of very large dimension.
In Section C.2, we further analyze the time complexity empirically for all the
methods under consideration.

6.3 Illustration of (CBIL)

In this section, we illustrate the value of (CBIL) evaluated on the unlabeled
examples pseudo-labeled by MSLA. We study how the bound’s value is penalized
by the mislabeling model, so we empirically compare it with the oracle C-bound
(CB) evaluated as if the labels for the considered unlabeled data would be
known.

To do so, we compute the value of the two bounds varying the number of ex-
amples used for evaluation with respect to the prediction confidence: the pseudo-
labeled examples are sorted by the value of the prediction vote in the descending
order, and we keep only the first ρ% of the examples for ρ ∈ {20, 40, 60, 80, 100}.

We use the votes of the current classifier and expect that with increase of
ρ we have more mislabels, so the (CBIL) is more penalized. In (CBIL), we
use the true value of the mislabeling matrix (i.e., evaluated using the labels of
unlabeled data) for clear illustration of the C-bound’s penalization. In Section
7, we discuss the possible estimations of the mislabeling matrix.

The experimental results on 4 data sets HAR, Isolet, Letter and MNIST are
illustrated in Figure 2. As expected, the classifier makes mistakes mostly on low
class votes, so the error increases when ρ grows. One can see that on Isolet,
HAR and Letter (CBIL) is close to the oracle C-bound for small ρ, since most

5Maximal resident set size (maxRSS) is the peak portion of memory that was occupied in
RAM during the run.
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Figure 2: (CBIL) and Oracle C-Bound when varying the number of pseudo-
labels on 4 data sets. We keep the most confident one (with respect to prediction
vote) from 20% to 100%.

of pseudo-labels are true. When more noisy pseudo-labels are included, the
difference between the two values becomes more evident, leading (CBIL) to be
more pessimistic. This is probably connected with the choice of the mislabeling
error model (24) that is class-related and not instance-related. Although we lose
some flexibility, the class-related mislabeling matrix would be easier to estimate
in practice. Finally, for MNIST, the two bounds are very close to each other, and
the mislabeling is occasional, which is agreed with Table 2 as pseudo-labels are
very helpful on this data set.

7 Conclusion and Future Work

In this paper, we proposed a new probabilistic framework for the multi-class
semi-supervised learning. At first, we derived a bound for the transductive con-
ditional risk of the majority vote classifier. This probabilistic bound is based
on the distribution of the class vote over unlabeled examples for a predicted
class. We deduced corresponding bounds on the confusion matrix norm and the
error rate as a corollary and determined when the bounds are tight. Then, we
proposed a multi-class self-learning algorithm where the threshold for selecting
unlabeled data to pseudo-label is automatically found from minimization of the
transductive bound on the majority vote error rate. From the numerical re-
sults, it came out that the self-learning algorithm is sensitive to the supervised
performance of the base classifier, but it can better pass the scale and signifi-
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cantly outperform the case when the threshold is manually fixed. However, the
pseudo-labels produced by self-learning are imperfect, so we proposed a misla-
beling error model to take explicitly into account these mislabeling errors. We
established the connection between the true and the imperfect output and conse-
quently extended the C-bound to imperfect labels, and derived a PAC-Bayesian
Theorem for controlling the sample effect. The proposed bound allowed us to
evaluate the performance of the learning model after pseudo-labeling the unla-
beled data. We illustrated the influence of the mislabeling error model on the
bound’s value on several real data sets.

We raise several open practical questions, which we detail below and leave
as a subject for future work.
Firstly, the proposed self-learning policy has been experimentally validated when
it is coupled with the random forest, but it would be interesting to test also with
deep learning methods. This, however, is not straightforward. It is well known
that the modern neural networks are not well calibrated, and examples are often
misclassified with a high prediction vote (Guo et al., 2017). This is a significant
limitation in our case, since we make an assumption that the classifier makes its
mistakes on examples with low prediction votes, which is used for the bound’s
approximation. Possible solutions include the use of neural network ensembles
or temperature scaling.
Secondly, further analysis of the learning model learned on pseudo-labels is
perplexing due to the so-called confirmation bias: at every iteration, the self-
learning includes into the training set unlabeled examples with highly confident
predictions, which arise from classifier’s overconfidence to its initial decisions
that could be erroneous. This implies that the hypotheses will have small dis-
agreement on the unlabeled set after pseudo-labeling, so the votes are no more
adequate for measuring prediction confidence. A correct estimation of misla-
beling probabilities or changing the way self-learning is learned are possible
solutions.
Thirdly, (CBIL) requires in practice the estimation of the mislabeling matrix,
which is a complex problem, but an active field of study (Natarajan et al., 2013).
Most of these studies tackle this problem from an algorithmic point of view: for
example, in the semi-supervised setting, Krithara et al. (2008) learn the mis-
labeling matrix together with the classifier parameters through the classifier
likelihood maximization for document classification; in the supervised setting, a
common approach is to detect anchor points whose labels are surely true (Scott,
2015). A potential idea would be to transfer this idea to the semi-supervised case
in order to detect the anchor points in the unlabeled set and use them together
with the labeled set for correct estimation of the noise in pseudo-labels; this
may require additional assumptions such as the existence of clusters (Rigollet,
2007; Maximov et al., 2018) or manifold structure (Belkin and Niyogi, 2004).

We also point out possible applications of (CBIL). At first, the bound can
be used for model selection tasks as semi-supervised feature selection (Sheikh-
pour et al., 2017). Since minimization of the C-bound implies simultaneously
maximization of the margin mean and minimization of the margin variance,
(CBIL) would guide a feature selection algorithm to choose an optimal feature
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subset based on the labeled and the pseudo-labeled sets.
Next, (CBIL) can be used as a criterion to learn the posterior Q in the semi-
supervised setting. This issue is actively studied in the supervised context, e.g.,
Roy et al. (2016); Bauvin et al. (2020) have been developed the boosting-based
C-bound optimization algorithms.
It should be noticed that for these two applications, the main objective is to
rank models, so the best model has the minimal error on the unlabeled set.
Hence, the bound analysis goes beyond the classical question of tightness: the
tightest bound does not always imply the minimal error, and a bound relaxation
can have a positive effect (see Appendix C.3).
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A Tools for Section 4

A.1 Tools for Theorem 3.2

Proof of Lemma 4.1. First, we obtain Eq. (4):

RU (GQ, i, j) =
1

ui
Eh∼Q

∑
x∈XU

P (Y = i|X = x)I(h(x) = j) =
1

ui

∑
x∈XU

P (Y = i|X = x)vQ(x, j)

≥ 1

ui

∑
x∈XU

P (Y = i|X = x)vQ(x, j)I(BQ(x) = j)

=
1

ui

Nj∑
t=1

∑
x∈XU

(
P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) = γ

(t)
j )
)
γ

(t)
j =

Nj∑
t=1

b
(t)
i,jγ

(t)
j .

Then, we deduce Eq. (5):

RU∧θ(BQ, i, j) =
1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) ≥ θj)

=
1

ui

Nj∑
t=1

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) = γ
(t)
j )I(γ(t)

j ≥ θj)

=
1

ui

Nj∑
t=kj+1

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) = γ
(t)
j ) =

Nj∑
t=kj+1

b
(t)
i,j .

Lemma A.1 (Lemma 4 in Amini et al. (2008)). Let (gi)i∈{1,...,N} be such that
0 < g1 < · · · < gN ≤ 1. Consider also pi ≥ 0 for each i ∈ {1, . . . , N}, B ≥ 0,
k ∈ {1, . . . , N}. Then, the optimal solution of the linear program:

maxq:=(q1,...,qN ) F (q) := maxq1,...,qN
∑N
i=k+1 qi

0 ≤ qi ≤ pi ∀i ∈ {1, . . . , N}∑N
i=1 qigi ≤ B

will be q∗ defined as, for all i ∈ {1, . . . , N}, q∗i = min

(
pi,
⌊
B−

∑
j<i q

∗
j gj

gi

⌋
+

)
I(i >

k); where, the sign b·c+ denotes the positive part of a number, bxc+ = x · I(x >
0).

Proof of Lemma A.1. It can be seen that the first k target variables should
be zero for the optimal solution. Indeed, they do not influence explicitly the
target function F . However, terms giqi for i ∈ {1, . . . , k} are positive, so their
increase leads to smaller values of qi for i ∈ {k + 1, . . . , N}, which in their
turn decrease the value of F . Because of this, we look for a solution in a space
O = {0}k ×

∏N
i=k+1[0, pi]. We aim to show that there is a unique optimal

solution q∗ in O.
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Existence. It is known that the linear program under consideration is a
convex, feasible and bounded task. Hence, there is a feasible optimal solution
qopt ∈

∏N
i=1[0, pi]. Then, we define qopt,O ∈ O:{

qopt,Oi = qopti if i > k

qopt,Oi = 0 otherwise.

It can be seen that this solution is feasible: F (qopt,O) = F (qopt). Then, there
exists an optimal solution inO. Further, the optimal solution is again designated
as q∗.

Unique representation. We would like to find a representation of q∗ that
is, in fact, unique. Before doing it, one can notice that for q∗ the following
equation is necessarily true:

N∑
i=1

q∗i gi = B.

Indeed, as gi are fixed, q∗ would not be optimal otherwise, and there would
exist q̃ such that

∑N
i=1 q̃igi >

∑N
i=1 q

∗
i gi, which implies F (q̃) > F (q∗).

Let’s consider the lexicographic order �:

∀(q,q′) ∈ RN×RN ,q � q′ ⇔
{
I(q′,q) = ∅

}
∨
{
I(q′,q) 6= ∅ ∧min

(
I(q,q′)

)
< min

(
I(q′,q)

)}
,

where I(q′,q) = {i|q′i > qi}.
We aim to show that the optimal solution is actually the greatest feasible

solution in O
for �. Let M be the set{i > k|q∗i < pi}. Then, there are two cases:

• M = ∅. It means that for all i > k, q∗i = pi and q∗ is then the maximal
element for � in O.

• M 6= ∅. Let’s consider K = min{i > k|q∗i < pi}, M = I(q,q∗). By
contradiction, suppose q∗ is not the greatest feasible solution for � and
there is q ∈ RN such that q � q∗.

1. M ≤ k. Then, qM > q∗M = 0. It implies that q 6∈ O.

2. k < M < K. Then, qM > q∗M = pM . The same, q 6∈ O.

3. M ≥ K. Then, F (q) > F (q∗). But it means that
∑N
i=1 qigi >∑N

i=1 q
∗
i gi = B.

Hence, we conclude that if the solution is optimal then it is necessarily the
greatest feasible solution for �. Let’s prove that if a solution is not the greatest
feasible one then it can not be optimal. With this statement, uniqueness would
be proven.

Consider q ∈ O such that q∗ � q.

• I(q,q∗) = ∅. Then, F (q∗) > F (q) and q is not optimal.
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• I(q,q∗) 6= ∅. Let K = min (I(q∗,q)) and M = min (I(q,q∗)). Then,

qM > q∗M ≥ 0 and K < M . Denote λ = min
(
qM ,

gM
gK

(pK − qK)
)

and

define q′ by:

q′i = qi, i 6∈ {K,M}, q′K = qK +
gM
gK

λ q′M = qM − λ

It can be observed that q′ satisfies the box constraints. Moreover, F (q′) =
F (q)+λ(gM/gK−1) > F (q) since gK < gM and λ > 0. Thus, q is not optimal.
Summing up, it is proven that there is the only optimal solution in O and it is
the greatest feasible one for �.

Then, let’s obtain an explicit representation of this solution. As it is the
greatest one in lexicographical order, we assign qi for i > k to maximal feasible
values, which are pi. It continues until the moment when

∑i
j=1 qigi is close to

B. Denote by I the index such that
∑I−1
i=1 pigi ≤ B, but

∑I
i=1 pigi ≥ B.

•
∑I−1
i=1 pigi = B. Then, qi = 0 for i ≥ I. It can be also written in the

following way:

qi =

⌊
B −

∑
j<i qjgj

gi

⌋
+

, i ≥ I

.

•
∑I−1
i=1 pigi < B. Then, qI is equal to residual:

qI =
B −

∑
j<I qjgj

gI
=

⌊
B −

∑
j<I qjgj

gI

⌋
+

.

For the other qi, i > I we assign to 0.

A.2 Tools for Proposition 4.5

Lemma A.2. For all x ∈ XU , for all (i, j) ∈ {1, . . . ,K}2, the following in-
equality holds:

RU (BQ, i, j) ≥
1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ∗)

+
1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

+ ri,j , (33)

where γ∗ := sup{γ ∈ Γj |
∑

x∈XU
P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) =

γ)/ui > τ}.

Proof. Denote γ∗ = γ
(p)
j . According to Lemma 4.1, Ki,j =

∑Nj

n=1 b
(n)
i,j γ

(n)
j ,

where b
(n)
i,j := 1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) = γ
(n)
j ). We
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can express b
(p)
i,j in the following way:

b
(p)
i,j =

Ki,j −
∑p−1
n=1 b

(n)
i,j γ

(n)
j −

∑Nj

n=p+1 b
(n)
i,j γ

(n)
j

γ
(p)
j

=
Ki,j −

∑p−1
n=1 b

(n)
i,j γ

(n)
j − ri,j

γ
(p)
j

.

Remind B
(n)
i,j = 1

ui

∑
x∈XU

P (Y = i|X = x)I(vQ(x, j) = γ
(n)
j ). From this we

derive the following:

−
p−1∑
n=1

b
(n)
i,j γ

(n)
j ≥ −

p−1∑
n=1

B
(n)
i,j γ

(n)
j = −M<

i,j(γ
(p)
j ) = −M<

i,j(γ
∗).

Taking into account this as well as b
(p)
i,j ≥ 0, we deduce a lower bound for b

(p)
i,j :

b
(p)
i,j ≥

1

γ∗
bKi,j −M<

i,j(γ
∗)− ri,jc+ =

1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+
. (34)

Also, taking into account Lemma 4.1, one can notice that:

RU (BQ, i, j) =

Nj∑
n=1

b
(n)
i,j =

p−1∑
n=1

b
(n)
i,j + b

(p)
i,j +

Nj∑
n=p+1

b
(n)
i,j

≥ 1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ∗) + b
(p)
i,j + ri,j ,

(35)

since
∑Nj

n=p+1 b
(n)
i,j ≥

∑Nj

n=p+1 b
(n)
i,j γ

(n)
j . Combining Eq. (34) and Eq. (35) we

infer Eq. (33):

RU (BQ, i, j) ≥
1

ui

∑
x∈XU

P (Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ∗)

+
1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

+ ri,j .

B Tools for Section 5

B.1 Tools for Theorem 5.1

Lemma B.1 (Cantelli-Chebyshev inequality). [Ex 2.3 in Boucheron et al.
(2013)] Let Z be a random variable with the mean µ and the variance σ2. Then,
for every a > 0, we have:

P (Z ≤ µ− a) ≤ σ2

σ2 + a2
.
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B.2 Tools for Theorem 5.4

B.2.1 Bounds for the Mislabeling Matrix’ Entries

We remind that the imperfection is summarized through the mislabeling matrix
P = (pi,j)1≤i,j≤K with

pi,j := P (Ŷ = i|Y = j) for all (i, j) ∈ {1, . . . ,K}2

such that
∑K
i=1 pi,j = 1. Also, recall that δ(x) := pBQ(x),BQ(x)−maxj∈Y\{BQ(x)} pBQ(x),j

and α(x) = pBQ(x),BQ(x).

Proposition B.2. Let P be the mislabeling matrix, and assume that pi,i >
pi,j , ∀i, j ∈ {1, . . . ,K}2. For any ε ∈ (0, 1], with probability 1 − ε over the
choice of the l sample, for all (i, j) ∈ {1, . . . ,K}2, for all x ∈ X ,

p̂j,c − r(lc) ≤ pj,c ≤ p̂j,c + r(lc), (36)

α(x) ≤ α̂(x) + r(lcx), (37)

1

δ(x)
≤ 1

δ̂(x)− r(lcx)− r(ljx)
, if δ̂(x) ≥ r(lcx) + r(ljx), (38)

where

• r(lk) =
√

1
2lk

ln 2
√
lk
ε ,

• lk =
∑l
i=1 I(yi = k)/l is the proportion of the labeled training examples

from the true class k,

• cx := BQ(x), jx := argminj∈Y\{cx)} lj,

• p̂j,c, α̂(x) and δ̂(x) are empirical estimates respectively of pj,c, α(x) and
δ(x) based on the available l sample.

Proof. Let Sj denote the subset of the available examples for which the true
class is j. Consider the non-negative random variable exp

{
2lj(p̂i,j − pi,j)2

}
.

From the Markov inequality we obtain that the following holds with probability
at least 1− ε over Sj ∼ P (X|Y = j)lj :

exp
{

2lj(p̂i,j − pi,j)2
}
≤ 1

δ
ESj

exp
{

2lj(p̂i,j − pi,j)2
}
. (39)

By successively applying Lemma B.3 and Lemma B.4, we deduce that

ESj
exp

{
2lj(p̂i,j − pi,j)2

}
≤ ESj

exp {lj · kl(p̂i,j ||pi,j)} ≤ 2
√
lj . (40)

Combining Eq. (39) and Eq. (40), we infer 2lj(p̂i,j − pi,j)2 ≤ ln
(
2
√
lj/δ

)
.

Eq. (36) is directly obtained from the last inequality, and hence, we derive also
Eq. (37). To prove Eq. (38), let us define

kx := argmax
k∈Y\{BQ(x)}

pcx,k, k̂x := argmax
k∈Y\{BQ(x)}

p̂cx,k.
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Then, we write:

1

δ(x)
=

1

pcx,cx − pcx,kx
≤ 1

pcx,cx − pcx,kx − r(lcx)− r(lkx)

≤ 1

pcx,cx − pcx,k̂x − r(lcx)− r(ljx)
=

1

δ̂(x)− r(lcx)− r(ljx)
.

These transitions hold only when the denominator is positive, which is ensured
if δ̂(x) ≥ r(lcx) + r(ljx).

Lemma B.3 (Pinsker’s Inequality for Bernoulli random variables, Theorem
4.19 in Boucheron et al. (2013)). For all p1, p2 ∈ [0, 1]2,

2(p2−p1)2 ≤ kl(p2||p1)

kl(p2||p1) :=p2 ln
p2

p1
+ (1−p2) ln

1−p2

1−p1
= KL(P2 ‖ P1),

where P2 and P1 are Bernoulli distributions with parameters p2 and p1 respec-
tively.

Lemma B.4 (Theorem 1 in Maurer (2004) and Lemma 19 in Germain et al.
(2015)). Let X = (X1, . . . , Xn) be a random vector, whose components Xi are
i.i.d. with values ∈ [0, 1] and expectation µ. Let X′ = (X ′1, . . . , X

′
n) denotes a

random vector, where each X ′i is the unique Bernoulli random variable of the
corresponding Xi: P (X ′i = 1) = EX ′i = EXi = µ, ∀i ∈ {1, . . . , n}. Then,

E
[
enKL(X̄ ‖ µ)

]
≤ E

[
enKL(X̄′ ‖ µ)

]
≤ 2
√
n,

where X̄ = 1
n

∑n
i=1Xi and X̄ ′ = 1

n

∑n
i=1X

′
i.

B.2.2 Lower Bound of the First Moment of the Margin

Proposition B.5. Let M̂ be a random variable such that [M̂ |X = x] is a
discrete random variable that is equal to the margin MQ(x, j) with probability

P (Ŷ = j|X=x), j = {1, . . . ,K}. Let µM̂1 be defined as in Theorem 5.3. Given
the conditions of Proposition B.2, for any set of classifiers H, for any prior
distribution P on H and any ε ∈ (0, 1], with a probability at least 1− ε over the
choice of the n sample, for every posterior distribution Q over H

µM̂,P
1 ≥ µ̄S1 −B1

√
2

n

[
KL(Q ‖ P ) + ln

2
√
n

δ

]
,

where

• µ̄S1 = 1
n

∑n
i=1(1/δ̃(x))

∑K
c=1MQ(x, c)P (Y = c|X = x) is the empirical

weighted margin mean based on the available n-sample S,

• δ̃(x) := δ̂(x)− r(lcx)− r(ljx),
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• B1 := maxx∈X |(1/δ̃(x))
∑K
c=1MQ(x, c)P (Y =c|X=x)|,

• KL denotes the Kullback–Leibler divergence.

Proof. Further, we denote the available sample with imperfect labels by S. Let

µM̂,P,h
1 and µ̄S,h1 be the random variables such that µM̂,P

1 = Eh∼QµM̂,P,h
1 and

µ̄S1 = Eh∼Qµ̄S,h1 .

We apply the Markov inequality to Eh∼P exp
{

n
2B2

1
(µ̄S,h1 − µM̂,P,h

1 )2
}

, which

is a non-negative random variable, and obtain that with probability at least 1−ε
over S ∼ P (X, Ŷ )n:

Eh∼P exp

{
n

2B2
1

(µ̄S,h1 − µM̂,P,h
1 )2

}
≤ 1

ε
ESEh∼P exp

{
n

2B2
1

(µ̄S,h1 −µ
M̂,P,h
1 )2

}
.

(41)

Since the prior distribution P over H is independent on S, we can swap ES and
Eh∼P . One can notice that

1

2B2
1

(µ̄S,h1 − µM̂,P,h
1 )2 = 2

[
1

2
(1− µ̄

S,h
1

B1
)− 1

2
(1−µ

M̂,P,h
1

B1
)

]2

,

which is the squared of the difference of two random variables that are both
between 0 and 1. Then, we successively apply Lemma B.3 and Lemma B.4
deriving that:

Eh∼PES exp

2n

[
1

2

(
1− µ̄

S,h
1

B1

)
− 1

2

(
1−µ

M̂,P,h
1

B1

)]2


≤ Eh∼PES exp

{
n · kl

(
1

2
(1− µ̄

S,h
1

B1
)

∣∣∣∣∣
∣∣∣∣∣12(1−µ

M̂,P,h
1

B1
)

)}
≤ Eh∼P 2

√
n = 2

√
n.

We apply this result for Eq. (41), and by taking the natural logarithm from
the both sides we obtain that:

ln

(
Eh∼P exp

{
n

2B2
1

(µ̄S,h1 −µ
M̂,P,h
1 )2

})
≤ ln

(
2
√
n

ε

)
. (42)

Using the change of measure (Lemma B.6) and the Jensen’s inequalities, we
derive that:

ln

(
Eh∼P exp

{
n

2B2
1

(µ̄S,h1 − µM̂,P,h
1 )2

})
≥ Eh∼Q

n

2B2
1

(µ̄S,h1 − µM̂,P,h
1 )2 −KL(Q ‖ P )

≥ n

2B2
1

(Eh∼Qµ̄S,h1 − Eh∼QµM̂,P,h
1 )2 −KL(Q ‖ P ).

Combining with Eq. (42), we derive:

n

2B2
1

(µ̄S1 − µ
M̂,P
1 )2 ≤ ln

(
2
√
n

ε

)
+KL(Q ‖ P ). (43)

The final inequality is directly inferred from Eq. (43).
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Lemma B.6 (Change of Measure Inequality Donsker and Varadhan (1975)).
For any measurable function φ defined on the hypothesis space H and all distri-
butions P,Q on H, the following inequality holds:

Eh∼Qφ(h) ≤ KL(Q ‖ P ) + lnEh∼P eφ(h).

B.2.3 Other Required Bounds

Proposition B.7. Let M̂ be a random variable such that [M̂ |X = x] is a
discrete random variable that is equal to the margin MQ(x, j) with probability

P (Ŷ =j|X=x), j = {1, . . . ,K}. Let µM̂,P
2 be defined as in Theorem 5.3. Given

the conditions of Proposition B.2, for any set of classifiers H, for any prior
distribution P on H and any ε ∈ (0, 1], with a probability at least 1− ε over the
choice of the n sample, for every posterior distribution Q over H

µM̂,P
2 ≤ µ̄S2 +B2

√
2

n

[
2KL(Q ‖ P ) + ln

2
√
n

ε

]
,

where

• µ̄S2 = 1
n (1/δ̃(x))

∑n
i=1

∑K
c=1(MQ(xi, c))

2P (Y = c|X=xi) is the empirical
weighted 2nd margin moment based on the available n-sample S,

• δ̃(x) := δ̂(x)− r(lcx)− r(ljx),

• B2 := maxx∈X |(1/δ̃(x))
∑K
c=1(MQ(x, c))2P (Y =c|X=x)|,

• KL denotes the Kullback–Leibler divergence.

Proof. The proof is similar to the one given for Proposition B.5, but relies on
the extension of the change of measure inequality (Lemma B.8).

Lemma B.8 (Change of Measure Inequality for Pairs of Voters (Lemma 1 in
Laviolette et al. (2017))). For any set of voters H, for any distributions P,Q
on H, and for any measurable function φ : H×H → R, the following inequality
holds:

E(h,h′)∼Q2φ(h, h′) ≤ 2KL(Q ‖ P ) + lnE(h,h′)∼P 2eφ(h,h′).

Proposition B.9. Given the conditions of Proposition B.2, for any ε ∈ (0, 1],
with a probability at least 1− ε over the choice of the n sample,

ψP ≤
1

n

n∑
i=1

α̂(xi) + r(lcx)

δ̂(xi)− r(lcx)− r(ljx)
+B3

√
2

n
ln

2
√
n

ε
,

where B3 := maxx∈X [α̂(xi) + r(lcx)]/[δ̂(xi)− r(lcx)− r(ljx)].

Proof. First, we take into consideration the result of Proposition B.2 and deduce
that ψP ≤ EX[(α̂(xi) + r(lcx))/(δ̂(xi) − r(lcx) − r(ljx))]. The rest of proof is
similar to those are given for Proposition B.2 and for Proposition B.5.
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C Additional Experiments

C.1 Approximation of the Posterior Probabilities for Self-
learning

In this section, we analyze the behavior of MSLA depending on how the transduc-
tive bound given by Eq. (TBi,j) is evaluated. Since the posterior probabilities
for unlabeled data are not known, we have proposed to estimate them as the
votes of the base supervised classifier learned using the labeled data only (Sup.
Estimation). This approach has been used in Section 6 for running MSLA. We
compare it with another strategy that is to assign P (Y = i|X = x) = 1/K, ∀x ∈
XU , ∀i ∈ {1, . . . ,K}. In this case, we consider the worst case when every class
is equally probable for each example (Unif. Estimation). Finally, we provide the
performance of MSLA when the labels of unlabeled data are given, which means
that the transductive bound is truly estimated (Oracle). Table 3 illustrates the
performance results. As we can see, the supervised approximation generally
outperforms the uniform one (significantly on MNIST). This might be explained
by the fact that the supervised votes may give some additional information on
the most probable labels for each example. In addition, we have observed that
on the last iterations the votes of MSLA tend to be biased, so such posteriors
can play a role of regularization. The performance results of the oracle show
that better estimation of the posteriors can give an improvement, though not
significantly on most of data sets. Note that the performance of the oracle is
not perfect, because the true labels are used only for the bound estimation, and
the votes are used for pseudo-labeling.

C.2 Time

In this section, we present the run-time of all the algorithms empirically com-
pared in Section 6.2. The results are depicted in Table4. In general, the obtained
run-time is coherent with the complexity analysis presented in Section 6.2. LS

and QN-S3VM have a very large run-time when they converge slowly, and they are
generally slower than the other algorithms. Semi-LDA is fast on the considered
data sets, though it may slow down on data of large dimension not considered
in this paper.

It can be seen that DAS-RF is slower than the self-learning algorithms, which
is due to the fact that the classifier is trained on all labeled and unlabeled
examples at each iteration. CSLA is the fastest approach since it re-trains the
base classifier only 3 times compared to 10 times for FSLA. From our observation,
MSLA needs usually around 3-5 iterations to pseudo-label the whole unlabeled
set, but it takes more time than CSLA, since it searches at each iteration the
threshold by minimizing the conditional Bayes error. We have implemented the
search in a single core, but it can be potentially parallelized. Nevertheless, the
MSLA still runs fast.
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Data set
MSLA

Unif. Estimation Sup. Estimation Oracle

Vowel .586 ± .029 .586 ± .026 .599 ± .028

Protein .773 ± .034 .781 ± .034 .805 ± .036

DNA .697 ± .079 .702 ± .082 .721 ± .09

Page Blocks .965 ± .002 .966 ± .002 .966 ± .002

Isolet .869 ± .015 .875 ± .014 .885 ± .012

HAR .852 ± .025 .854 ± .026 .856 ± .022

Pendigits .873 ± .024 .884 ± .022 .892 ± .016

Letter .716 ± .013 .717 ± .013 .723 ± .012

Fashion .722 ± .022 .723 ± .023 .728 ± .024

MNIST .834 ± .016 .857 ± .013 .87 ± .012

SensIT .722 ± .021 .722 ± .021 .722 ± .021

Table 3: The performance comparison of MSLA depending on how the posterior
probabilities are estimated in the evaluation of the transductive bound (Eq.
(TBi,j)).

Table 4: The average run-time of the learning algorithms under consideration
on the data sets described in Table 1. s stands for seconds, m for minutes and
h for hours.

Data set RF LS QN-S3VM Semi-LDA DAS-RF FSLAθ=0.7 CSLA∆=1/3 MSLA

Vowel 1 s 6 s 2 s 3 s 7 s 11 s 2 s 5 s

Protein 1 s 22 s 4 m 5 s 6 s 10 s 2 s 4 s

DNA 1 s 1 m 26 s 1 s 9 s 7 s 3 s 4 s

PageBlocks 1 s 2 m 2 m 14 s 9 s 12 s 3 s 6 s

Isolet 1 s 1 m 1 h 10 s 38 s 16 s 5 s 28 s

HAR 1 s 18 m 32 m 3 s 42 s 23 s 6 s 13 s

Pendigits 1 s 30 m 10 m 37 s 13 s 13 s 3 s 14 s

Letter 1 s 3 h 40 m 1 m 20 s 16 s 5 s 1 m

Fashion 1 s >4 h >4 h 1 m 2 m 1 m 29 s 1 m

MNIST 1 s >4 h >4 h 1 m 2 m 1 m 29 s 1 m

SensIT 1 s >4 h >4 h 2 m 3 m 2 m 30 s 1 m
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C.3 Relaxation of CBIL

The proposed (CBIL) is based on Eq. (26), which holds only when δ(x) ≥ 0. As
it was discussed in Section 5.2, Eq. (26) can be relaxed by adding some λ > 0
leading to Eq. (28). In practice, it not only can make the bound computable, but
also make it smoother, since arbitrarily small values of δ(x) implies arbitrarily
large values of r̂(x)/δ(x). The latter should be avoided if (CBIL) is used as
some optimization or selection criterion.

In this section, we study the impact of λ on the bound’s value on different
data sets. In Figure 3, we display the results of all 20 experimental trials for
HAR, Isolet, Letter, MNIST and Fashion when λ ∈ [0.1, 0.2, . . . , 1]. One can
observe that when the bound is not penalized much (i.e., δ(x) is far from 0),
then the increase of λ makes the bound looser, so λ = 0.1 is the tightest choice.
Exactly the opposite situation is observed when δ(x) is small (trials 4 and 14 for
Letter, most of trials for Fashion): higher values of λ diminish the influence
of hyperbolic weights 1/δ(x), so λ = 1 leads to the tightest bound.
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Figure 3: The value of (CBIL) with different λ over 20 different la-
beled/unlabeled splits of 5 data sets.

We also note that small δ(x) not only makes the bound looser, but also leads
to poor correlation with the true error. It can particularly be seen in Figure 4,
where we repeated the experiment done in Section 6.3 for the Fashion data set
when λ = 0 and λ = 0.1. It is clearly seen that with λ = 0.1 the curve’s shape
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becomes much more similar to the oracle C-bound. Eventually, in average, λ
can make the bound looser but better correlated with the true error, where the
latter is more important for practical applications.
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Figure 4: (CBIL) and Oracle C-Bound when varying the number of unlabeled
examples used for evaluation on Fashion data set. We keep the most confident
one (with respect to prediction vote) from 20% to 100%.

46


	1 Introduction
	2 Related Work
	3 Framework and Definitions
	4 Probabilistic Transductive Bounds and Their Application
	4.1 Transductive conditional risk
	4.2 Transductive confusion matrix and transductive error rate
	4.3 Tightness Guarantees
	4.4 Multi-class Self-learning Algorithm

	5 Probabilistic C-Bound with Imperfect Labels
	5.1 C-Bound in the Probabilistic Setting
	5.2 Mislabeling Error Model
	5.3 C-Bounds with Imperfect Labels
	5.4 PAC-Bayesian Theorem for C-Bound Estimation

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Illustration of MSLA
	6.3 Illustration of (CBIL)

	7 Conclusion and Future Work
	A Tools for Section 4
	A.1 Tools for Theorem 3.2
	A.2 Tools for Proposition 4.5

	B Tools for Section 5
	B.1 Tools for Theorem 5.1
	B.2 Tools for Theorem 5.4
	B.2.1 Bounds for the Mislabeling Matrix' Entries
	B.2.2 Lower Bound of the First Moment of the Margin
	B.2.3 Other Required Bounds


	C Additional Experiments
	C.1 Approximation of the Posterior Probabilities for Self-learning
	C.2 Time
	C.3 Relaxation of CBIL


