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Multivariate Time Series Forecasting

Captures complex dependencies enhancing forecasting quality.

Key for fields like economics, climate, and finance.

Motivation of the paper: study it theoretically
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Linear Setting

Modern forecasters are deep-learning-based.

For theoretical derivations, we consider linear forecasting,

. Or a deep model with a frozen feature extractor.
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Our Framework: Multivariate as Multi-Task

We view multivariate forecasting as a multi-task problem.

Soft Parameter Sharing approach1:

W0 catches the common part, reducing task overfitting.
Vt are task-specific terms for individual biases.

1(Xu et al., 2013) Multi-output least-squares support vector regression machines.
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Multi-Task Forecasting Framework

Problem Setup. Time series channel t ∈ {1, . . . , T} is
viewed as a distinct task:

Training data: X(t) ∈ Rd×nt , Responses: Y (t) ∈ Rq×nt ,

d is seq. length, q is pred. horizon, nt is sample size

Linear Signal-Plus-Noise Model:

Y (t) =
X(t)⊤Wt√

Td
+ ϵ(t), ∀t,

ϵ(t) is noise,
Wt = W0 + Vt combines shared W0 and task-specific
components Vt:
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Optimization Objective

Objective. We aim to estimate the shared component W0

and task-specific components {Vt}Tt=1 by solving:

min
1

2λ
∥W0∥2F +

1

2

T∑
t=1

∥Vt∥2F
γt

+
1

2

T∑
t=1

∥∥∥∥∥Y (t) − X(t)⊤Wt√
Td

∥∥∥∥∥
2

F

λ controls impact of the common part on a final prediction.

γt controls overfitting strength to the task t.
Closed-form solution.

Questions:
What are generalization guarantees of the model?
How to balance the shared and task-specific components?
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Random Matrix Analysis

Three types of asymptotic analysis:

Traditional: d is fixed, n is large (n ≫ d, n→∞).

Small-data: n is small, d is large, (n ≪ d, d→∞).

Large-dimensional: n, d are both large (c0=
d
n =O(1),

(n, d)→∞).

Assumptions on data distribution:

Noise is randomly sampled from a fixed distribution with
0-mean and covariance ΣN ∈ Rq×q.

Concentrated Data (Louart, C. and Couillet, R., 2018): variance of
x⊤Wt does not grow with dimension d,

Particular cases:

Standard Gaussian distribution,
Lipschitz transformation of Gaussian (e.g., GAN images),
Open question: features learned by DNN?
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Asymptotic Train and Test Risk

We want to evaluate the asymptotic train and test risk:

R∞
train =

1

Tn

T∑
t=1

E
[
∥Y (t) − g(X(t))∥22

]
, R∞

test =
1

T

T∑
t=1

E[∥y(t) − g(x(t))∥22].

Theorem (Asymptotic Train and Test Risk)

Under the large-dimension regime and concentration assumption,
the asymptotic train and test risks are explicitly derived, with
analytical curves in closed form depending on the hyperparameters,
signal-generating hyperplane, and noise level.

Sketch of Proof.

Following the notion of deterministic equivalents of a random
matrix, we compute for the test risk:

Ex,X(t)

[
∥y(t) − ω∗(X(t))⊤x∥22

]
,
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Particular Case: Two Tasks

For two tasks (T = 2) with identity covariance and γ1 = γ2 = γ,
the asymptotic test risk simplifies to:

R∞
test = DST (∥W1∥22 + ∥W2∥22)︸ ︷︷ ︸

Signal Term

+CCTTW
⊤
1 W2︸ ︷︷ ︸

Cross-Task Term

+NNT trΣn︸ ︷︷ ︸
Noise Term

,

DST , CCTT and NNT are functions of λ, γ, n and d.

Optimal balance between signal and noise terms:

λ⋆ =
n

d

(
∥W1∥22 + ∥W2∥22

trΣN
+

W⊤
1 W2

trΣN

)
− γ

2
.
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Contribution of Each Term to Tesk Risk

Observations. As lambda increases, the cross-term and signal
term decrease, while the noise term increases.

Explanation. A large lambda forces tasks to interact,
leveraging their relationships (decreasing cross term) but
risking to increase noise and create non-existent patterns.
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Theoretical vs Empirical Risk

Experimental Setup:
Two-task setting (T = 2):
W1 ∼ N (0, Id), W2 = αW1 +

√
1− α2 W⊥

1 .
α ∈ [0, 1] controls task similarity, W⊥

1 is orthogonal to W1.

Results:
We compare theoretical asymptotic error with empirical one by
varying λ and α.
Theoretical curves align well the empirical ones ⇒ potential for
model selection.
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Forecasting as Multi-Task Regression

Idea: use multi-task loss to train univariate model for
multivariate forecasting.

3 Forecasters: PatchTST, DLinearU, Transformer.
3 Multivariate SOTA: SAMformer, DLinearM, iTransformer.
λ and γt are hyperopted.

This easy trick to learn channel interactions improves all the 3
considered models.
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Thank you for your attention!

Paper Paris Noah’s Ark Lab
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