

Theoretically Analysing Multi-Task Regression with Application to Time Series Forecasting

Romain Ilbert, Malik Tiomoko, Cosme Louart, Ambroise Odonnat, **Vasilii Feofanov**, Themis Palpanas, levgen Redko

Huawei Paris Noah's Ark Lab Paris Descartes University The Chinese University of Hong Kong

NeurIPS 2024, Spotlight NeurIPS @ Paris, December 5

Multivariate Time Series Forecasting

- Captures complex dependencies enhancing forecasting quality.
- Key for fields like economics, climate, and finance.
- Motivation of the paper: study it theoretically

- Modern forecasters are deep-learning-based.
- For theoretical derivations, we consider linear forecasting,

- Modern forecasters are deep-learning-based.
- For theoretical derivations, we consider linear forecasting,
- Or a deep model with a frozen feature extractor.

Our Framework: Multivariate as Multi-Task

• We view multivariate forecasting as a **multi-task** problem.

¹(Xu et al., 2013) Multi-output least-squares support vector regression machines. 3

Our Framework: Multivariate as Multi-Task

• We view multivariate forecasting as a **multi-task** problem.

- Soft Parameter Sharing approach¹:
 - W_0 catches the common part, reducing task overfitting.
 - V_t are task-specific terms for individual biases.

¹(Xu et al., 2013) Multi-output least-squares support vector regression machines.

• **Problem Setup.** Time series channel $t \in \{1, ..., T\}$ is viewed as a distinct task:

Training data: $X^{(t)} \in \mathbb{R}^{d \times n_t}$, Responses: $Y^{(t)} \in \mathbb{R}^{q \times n_t}$, d is seq. length, q is pred. horizon, n_t is sample size

• **Problem Setup.** Time series channel $t \in \{1, ..., T\}$ is viewed as a distinct task:

Training data: $X^{(t)} \in \mathbb{R}^{d \times n_t}$, Responses: $Y^{(t)} \in \mathbb{R}^{q \times n_t}$, d is seq. length, q is pred. horizon, n_t is sample size

Linear Signal-Plus-Noise Model:

$$\mathbf{Y}^{(t)} = rac{{\mathbf{X}^{(t)}}^{ op} \mathbf{W}_t}{\sqrt{Td}} + \boldsymbol{\epsilon}^{(t)}, \quad \forall t,$$

- $\epsilon^{(t)}$ is noise,
- $W_t = W_0 + V_t$ combines shared W_0 and task-specific components V_t :

$$\min \frac{1}{2\lambda} \|\boldsymbol{W}_{0}\|_{F}^{2} + \frac{1}{2} \sum_{t=1}^{T} \frac{\|\boldsymbol{V}_{t}\|_{F}^{2}}{\gamma_{t}} + \frac{1}{2} \sum_{t=1}^{T} \left\|\boldsymbol{Y}^{(t)} - \frac{\boldsymbol{X}^{(t)^{\top}} \boldsymbol{W}_{t}}{\sqrt{Td}}\right\|_{F}^{2}$$

• λ controls impact of the common part on a final prediction.

$$\min \frac{1}{2\lambda} \|\boldsymbol{W}_{0}\|_{F}^{2} + \frac{1}{2} \sum_{t=1}^{T} \frac{\|\boldsymbol{V}_{t}\|_{F}^{2}}{\gamma_{t}} + \frac{1}{2} \sum_{t=1}^{T} \left\|\boldsymbol{Y}^{(t)} - \frac{\boldsymbol{X}^{(t)}^{\top} \boldsymbol{W}_{t}}{\sqrt{Td}}\right\|_{F}^{2}$$

- λ controls impact of the common part on a final prediction.
- γ_t controls overfitting strength to the task t.

$$\min \frac{1}{2\lambda} \|\boldsymbol{W}_{0}\|_{F}^{2} + \frac{1}{2} \sum_{t=1}^{T} \frac{\|\boldsymbol{V}_{t}\|_{F}^{2}}{\gamma_{t}} + \frac{1}{2} \sum_{t=1}^{T} \left\|\boldsymbol{Y}^{(t)} - \frac{\boldsymbol{X}^{(t)}^{\top} \boldsymbol{W}_{t}}{\sqrt{Td}}\right\|_{F}^{2}$$

- λ controls impact of the common part on a final prediction.
- γ_t controls overfitting strength to the task t.
- Closed-form solution.

$$\min \frac{1}{2\lambda} \|\boldsymbol{W}_{0}\|_{F}^{2} + \frac{1}{2} \sum_{t=1}^{T} \frac{\|\boldsymbol{V}_{t}\|_{F}^{2}}{\gamma_{t}} + \frac{1}{2} \sum_{t=1}^{T} \left\|\boldsymbol{Y}^{(t)} - \frac{\boldsymbol{X}^{(t)^{\top}} \boldsymbol{W}_{t}}{\sqrt{Td}}\right\|_{F}^{2}$$

- λ controls impact of the common part on a final prediction.
- γ_t controls overfitting strength to the task t.
- Closed-form solution.

Questions:

- What are generalization guarantees of the model?
- How to balance the shared and task-specific components?

• Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$.

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$.
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$.

Random Matrix Analysis

Three types of asymptotic analysis:

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$.
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$.
- Large-dimensional: n, d are both large $(c_0 = \frac{d}{n} = \mathcal{O}(1), (n, d) \rightarrow \infty)$.

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$.
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$.

• Large-dimensional: n, d are both large $(c_0 = \frac{d}{n} = \mathcal{O}(1), (n, d) \rightarrow \infty)$.

Assumptions on data distribution:

Noise is randomly sampled from a fixed distribution with 0-mean and covariance $\Sigma_N \in \mathbb{R}^{q \times q}$.

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$.
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$.

■ Large-dimensional: n, d are both large $(c_0 = \frac{d}{n} = \mathcal{O}(1), (n, d) \rightarrow \infty)$.

Assumptions on data distribution:

- Noise is randomly sampled from a fixed distribution with 0-mean and covariance $\Sigma_N \in \mathbb{R}^{q \times q}$.
- Concentrated Data (Louart, C. and Couillet, R., 2018): variance of $\mathbf{x}^{\top} \mathbf{W}_t$ does not grow with dimension d,

- Traditional: d is fixed, n is large $(n \gg d, n \rightarrow \infty)$.
- Small-data: n is small, d is large, $(n \ll d, d \rightarrow \infty)$.

■ Large-dimensional: n, d are both large $(c_0 = \frac{d}{n} = \mathcal{O}(1), (n, d) \rightarrow \infty)$.

Assumptions on data distribution:

Noise is randomly sampled from a fixed distribution with 0-mean and covariance $\Sigma_N \in \mathbb{R}^{q \times q}$.

• Concentrated Data (Louart, C. and Couillet, R., 2018): variance of $\mathbf{x}^{\top} \mathbf{W}_t$ does not grow with dimension d, Particular cases:

- Standard Gaussian distribution,
- Lipschitz transformation of Gaussian (e.g., GAN images),
- Open question: features learned by DNN?

We want to evaluate the asymptotic train and test risk:

$$\mathcal{R}_{train}^{\infty} = \frac{1}{Tn} \sum_{t=1}^{T} \mathbb{E}\left[\| \boldsymbol{Y}^{(t)} - g(\boldsymbol{X}^{(t)}) \|_{2}^{2} \right], \quad \mathcal{R}_{test}^{\infty} = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\| \boldsymbol{y}^{(t)} - g(\boldsymbol{x}^{(t)}) \|_{2}^{2}].$$

Theorem (Asymptotic Train and Test Risk)

Under the large-dimension regime and concentration assumption, the asymptotic train and test risks are explicitly derived, with analytical curves in closed form depending on the hyperparameters, signal-generating hyperplane, and noise level.

Sketch of Proof.

 Following the notion of deterministic equivalents of a random matrix, we compute for the test risk:

$$\mathbb{E}_{\mathbf{x},\mathbf{X}^{(t)}}\left[\|\mathbf{y}^{(t)}-\boldsymbol{\omega}^*(\mathbf{X}^{(t)})^{\top}\mathbf{x}\|_2^2\right],$$

For two tasks (T = 2) with identity covariance and $\gamma_1 = \gamma_2 = \gamma$, the asymptotic test risk simplifies to:

$$\mathcal{R}_{\mathsf{test}}^{\infty} = \underbrace{\boldsymbol{D}_{ST}(\|\boldsymbol{W}_1\|_2^2 + \|\boldsymbol{W}_2\|_2^2)}_{\textit{Signal Term}} + \underbrace{\boldsymbol{C}_{CTT}\boldsymbol{W}_1^\top\boldsymbol{W}_2}_{\textit{Cross-Task Term}} + \underbrace{\boldsymbol{N}_{NT}\operatorname{tr}\boldsymbol{\Sigma}_n}_{\textit{Noise Term}},$$

• D_{ST} , C_{CTT} and N_{NT} are functions of λ , γ , n and d.

For two tasks (T = 2) with identity covariance and $\gamma_1 = \gamma_2 = \gamma$, the asymptotic test risk simplifies to:

$$\mathcal{R}_{\mathsf{test}}^{\infty} = \underbrace{\boldsymbol{D}_{ST}(\|\boldsymbol{W}_1\|_2^2 + \|\boldsymbol{W}_2\|_2^2)}_{Signal \ Term} + \underbrace{\boldsymbol{C}_{CTT}\boldsymbol{W}_1^\top\boldsymbol{W}_2}_{Cross-Task \ Term} + \underbrace{\boldsymbol{N}_{NT} \operatorname{tr}\boldsymbol{\Sigma}_n}_{Noise \ Term},$$

D_{ST}, C_{CTT} and N_{NT} are functions of λ , γ , n and d.

Optimal balance between signal and noise terms:

$$\lambda^{\star} = \frac{n}{d} \left(\frac{\|\boldsymbol{W}_1\|_2^2 + \|\boldsymbol{W}_2\|_2^2}{\operatorname{tr} \boldsymbol{\Sigma}_N} + \frac{\boldsymbol{W}_1^{\top} \boldsymbol{W}_2}{\operatorname{tr} \boldsymbol{\Sigma}_N} \right) - \frac{\gamma}{2}.$$

Ilbert, Tiomoko, et al., by Feofanov

Contribution of Each Term to Tesk Risk

- <u>Observations.</u> As lambda increases, the cross-term and signal term decrease, while the noise term increases.
- Explanation. A large lambda forces tasks to interact, leveraging their relationships (decreasing cross term) but risking to increase noise and create non-existent patterns.

Theoretical vs Empirical Risk

Experimental Setup:

- Two-task setting (T = 2): $W_1 \sim \mathcal{N}(0, I_d)$, $W_2 = \alpha W_1 + \sqrt{1 - \alpha^2} W_1^{\perp}$.
- $\alpha \in [0,1]$ controls task similarity, \pmb{W}_1^\perp is orthogonal to $\pmb{W}_1.$

Theoretical vs Empirical Risk

- Experimental Setup:
 - Two-task setting (T = 2): $W_1 \sim \mathcal{N}(0, I_d), \quad W_2 = \alpha W_1 + \sqrt{1 - \alpha^2} W_1^{\perp}.$
 - $\alpha \in [0,1]$ controls task similarity, W_1^{\perp} is orthogonal to W_1 .
- Results:
 - \bullet We compare theoretical asymptotic error with empirical one by varying λ and $\alpha.$
 - $\bullet\,$ Theoretical curves align well the empirical ones \Rightarrow potential for model selection.

- Idea: use multi-task loss to train univariate model for multivariate forecasting.
 - 3 Forecasters: PatchTST, DLinearU, Transformer.
 - 3 Multivariate SOTA: SAMformer, DLinearM, iTransformer.
 - λ and γ_t are hyperopted.
- This easy trick to learn channel interactions improves all the 3 considered models.

Dataset	Н	with MTL regularization			without MTL regularization					
		PatchTST	DLinearU	Transformer	PatchTST	DLinearU	DLinearM	Transformer	SAMformer [†]	$iTransformer^{\dagger}$
ETTh1	96	0.385	0.367*	0.368	0.387	0.397	0.386	0.370	0.381	0.386
	192	0.422	0.405*	0.407^{*}	0.424	0.422	0.437	0.411	0.409	0.441
	336	0.433^{*}	0.431	0.433	0.442	0.431	0.481	0.437	0.423	0.487
	720	0.430^{*}	0.454	0.455^{*}	0.451	0.428	0.519	0.470	0.427	0.503
EITh2	96	0.291	0.267^{*}	0.270	0.295	0.294	0.333	0.273	0.295	0.297
	192	0.346^{*}	0.331*	0.337	0.351	0.361	0.477	0.339	0.340	0.380
	336	0.332*	0.367	0.366^{*}	0.342	0.361	0.594	0.369	0.350	0.428
	720	0.384*	0.412	0.405^{*}	0.393	0.395	0.831	0.428	0.391	0.427
Weather	96	0.148	0.149*	0.154^{*}	0.149	0.196	0.196	0.170	0.197	0.174
	192	0.190	0.206^{*}	0.198^{*}	0.193	0.243	0.237	0.214	0.235	0.221
	336	0.242^{*}	0.249^{*}	0.258	0.246	0.283	0.283	0.260	0.276	0.278
	720	0.316*	0.326^{*}	0.331	0.322	0.339	0.345	0.326	0.334	0.358

Thank you for your attention!

Paper

Paris Noah's Ark Lab