

Une borne transductive multiclasses pour le classifieur de vote majoritaire

Vasilii Feofanov, Emilie Devijver and Massih-Reza Amini

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Objectives

• Semi-supervised learning (SSL) has been well-investigated in the binary classification framework. But there is still a large avenue for theoretical studies for both the binary and the multiclass case.

• In the multiclass framework, there are just few

Theorem

Suppose an upper bound $R_u^{\delta}(G_Q, i, j)$ that holds with prob. $1 - \delta$ is given. Then for any Q and $\forall \delta \in (0, 1], \forall \theta \in [0, 1]^K$ with prob. at least $1 - \delta$ we have: $R_{\mathcal{U}}(B_Q, i, j) \le \inf_{\gamma \in [0, 1]} \left\{ I_{i, j}^{(\leq, <)}(0, \gamma) + \frac{1}{\gamma} \left[(K_{i, j}^{\delta} - M_{i, j}^{<}(\gamma)) \right]_{+} \right\}.$ $R_{\mathcal{U}\wedge\boldsymbol{\theta}}(B_Q,i,j) \leq$

Numerical Experiments

We consider 5 datasets, for each of them 20 trials with random train/test split are performed.

Dataset	# of labelled	# of unlabelled	Dimension, d	# of classes, K
	examples, l	examples, u		
DNA	31	3155	180	3
MNIST	210	41790	901	10
Pendigits	109	10883	16	10
SensIT	49	22831	100	3

classification methods by now.

In this work we propose:

- An extension of the self-learning algorithm [1] for the multiclass classification,
- A transductive bound of the Bayes risk in the multiclass framework.

Framework

We consider the following framework:

- An input $\mathcal{X} \subset \mathbb{R}^d$ and an output $\mathcal{Y} = \{1, \dots, K\}$ spaces,
- A set of labeled i.i.d. training examples $Z_{\mathcal{L}} = (\mathbf{x}_i, y_i)_{1 \le i \le l} \in (\mathcal{X} \times \mathcal{Y})^l$ distributed with respect to a fixed yet unknown probability distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$,
- A set of unlabeled i.i.d. training examples $X_{\mathcal{U}} = (\mathbf{x}'_i)_{l+1 \le i \le l+u} \in \mathcal{X}^u$ that are drawn from the marginal distribution $\mathcal{D}_{\mathcal{X}}$ over \mathcal{X} ,

$$\inf_{\gamma \in [\theta_j, 1]} \left\{ I_{i,j}^{(\leq, \leq)}(\theta_j, \gamma) + \frac{1}{\gamma} \left[(K_{i,j}^{\delta} - M_{i,j}^{<}(\gamma) + M_{i,j}^{<}(\theta_j)) \right]_{+} \right\},$$

where

•
$$K_{i,j}^{\delta} = R_u^{\delta}(G_Q, i, j) - \varepsilon_{i,j},$$

• $\varepsilon_{i,j} = \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{1}_{B_Q(\mathbf{x}') \neq j} \mathbb{1}_{y'=i} m_Q(\mathbf{x}', j),$
• $I_{i,j}^{(\leq,<)}(\theta_j, \gamma) = \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{1}_{y'=i} \mathbb{1}_{\theta_j \leq m_Q(\mathbf{x}', j) < \gamma},$
• $M_{i,j}^{<}(t) = \frac{1}{u_i} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{1}_{y'=i} \mathbb{1}_{m_Q(\mathbf{x}', j) < t} m_Q(\mathbf{x}', j).$

Corollary

Let $U_{i,j}^{\delta}(\boldsymbol{\theta})$ be an upper bound for $R_{\mathcal{U}\wedge\boldsymbol{\theta}}(B_Q,i,j)$. Introduce the confusion matrix $\mathbf{U}_{\boldsymbol{\theta}}^{\delta}$ which (i, j)-entry is 0, if i = j, and $U_{i,j}^{\delta}(\boldsymbol{\theta})$ otherwise. Then, we have:

$$\mathbf{E}_{\mathcal{U}\wedge\boldsymbol{\theta}}(B_Q) \leq \left\| \left(\mathbf{U}_{\boldsymbol{\theta}}^{\delta} \right)^{\mathsf{T}} \mathbf{p} \right\|_{1},$$
$$\mathbf{E}_{\mathcal{U}}(B_Q) \leq \left\| \left(\mathbf{U}_{\mathbf{0}_K}^{\delta} \right)^{\mathsf{T}} \mathbf{p} \right\|_{1},$$

where
$$\mathbf{p} = \{u_i/u\}_{i=1}^K$$
 and $\mathbf{0}_K = (0)_{n=1}^K$.

Algorithm 1: MSLA

Vowel	99	891	10	11
-------	----	-----	----	----

Table: Description of our experimental setup.

We compare MSLA with the supervised Random Forest (**RF**) and the multi-class self-learning algorithm with a fixed threshold (FSLA). Both MSLA and FSLA use the Random Forest as the majority vote classifier.

Dataset	Score	RF	MSLA	$FSLA_{\theta=0.7}$	$FSLA_{\theta=0.9}$
DNA	ACC	$.6986 \pm .0767$	$.7076 \pm .0817$	$.5168^{\downarrow} \pm .082$	$.6921 \pm .0752$
	F1	$.6558 \pm .1144$	$\textbf{.6665} \pm .1174$	$.3747^{\downarrow} \pm .0852$	$.6467 \pm .1141$
MNIST	ACC	$.9039^{\downarrow} \pm .0120$	$.9448 \pm .0061$	$.8654^{\downarrow} \pm .0658$	$.7039^{\downarrow} \pm .0563$
	F1	$.9031^{\downarrow} \pm .0125$	$\textbf{.9448} \pm .0063$	$.8450^{\downarrow} \pm .0882$	$.6852^{\downarrow} \pm .0647$
Pendigits	ACC	$.861^{\downarrow} \pm .0201$	$\textbf{.886} \pm .0162$	$.835^{\downarrow} \pm .0384$	$.7998^{\downarrow} \pm .0287$
	F1	$.8586^{\downarrow} \pm .0229$	$\textbf{.8845} \pm .0171$	$.8257^{\downarrow} \pm .0488$	$.7906^{\downarrow} \pm .0358$
SensIT	ACC	$.67 \pm .0291$	$\textbf{.6745} \pm .0288$	$.6192^{\downarrow} \pm .0366$	$.53^{\downarrow} \pm .0391$
	F1	$.654 \pm .0448$	$\textbf{.6599} \pm .0421$	$.5784^{\downarrow} \pm .0683$	$.4302^{\downarrow} \pm .0887$
Vowel	ACC	$.5851 \pm .0273$	$.5846 \pm .0268$	$.5265^{\downarrow} \pm .0374$	$.5839 \pm .0292$
	F1	$.5733 \pm .0293$	$\textbf{.5754} \pm .0278$	$.5053^{\downarrow} \pm .0407$	$.5713 \pm .0311$

Table: Classification performance on different datasets described in Table 1. Two score functions are computed, namely, accuracy and F1. The sign \downarrow shows if the performance is significantly worse than the best result on the level 0.01.

Results

• Overall, the MSLA performs better than the others.

- A hypothesis space \mathcal{H} ,
- A posterior distribution Q over \mathcal{H} .

We assume that for each $\mathbf{x} \in X_{\mathcal{U}}$ there is exactly one possible label, and $l \ll u$, which leads to an inefficient supervised model. The *goal* is to minimize an error on the unlabeled set.

Definitions

The Bayes B_Q and the Gibbs G_Q classifiers: • $B_Q(\mathbf{x}) := \operatorname{argmax}_{c \in \mathcal{Y}} \left[\mathbb{E}_{h \sim Q} \mathbb{1}_{h(\mathbf{x})=c} \right], \quad \forall \mathbf{x} \in \mathcal{X}.$ • G_Q is a stochastic learning algorithm that chooses randomly a hypothesis $h \in \mathcal{H}$ according to the distribution Q and then predicts $h(\mathbf{x})$ for $\mathbf{x} \in \mathcal{X}$.

Transductive measures of error:

- The error rate: $\mathbf{E}_{\mathcal{U}}(h) := \frac{1}{u} \sum_{\mathbf{x}' \in X_{\mathcal{U}}} \mathbb{1}_{h(\mathbf{x}') \neq y'}$, • The conditional risk:
- $R_{\mathcal{U}}(h,i,j) := \frac{1}{u_i} \sum_{\mathbf{x}' \in \mathcal{X}_{\mathcal{U}}} \mathbb{1}_{h(\mathbf{x}')=j} \mathbb{1}_{y'=i},$ • The confusion matrix: $\mathbf{C}_{h}^{\mathcal{U}} = (c_{ij})_{i,j=\{1,\ldots,K\}^2}$ with

Input: Train and unlabelled sets $Z_{\mathcal{L}}, X_{\mathcal{U}}$. A classifier H is trained on $Z_{\mathcal{L}}$.

repeat

1. Compute θ^* that minimizes the conditional Bayes error rate:

 $\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta} \in (0,1]^K} \mathbf{E}_{\mathcal{U}|\boldsymbol{\theta}}(B_Q).$

2. From $X_{\mathcal{U}}$ to $Z_{\mathcal{L}}$ move observations (\mathbf{x}', y') such that:

 $[m_Q(\mathbf{x}', y') \ge \theta_{y'}] \land [y' = \operatorname*{argmax}_{c \in \mathcal{Y}} m_Q(\mathbf{x}', c)]$

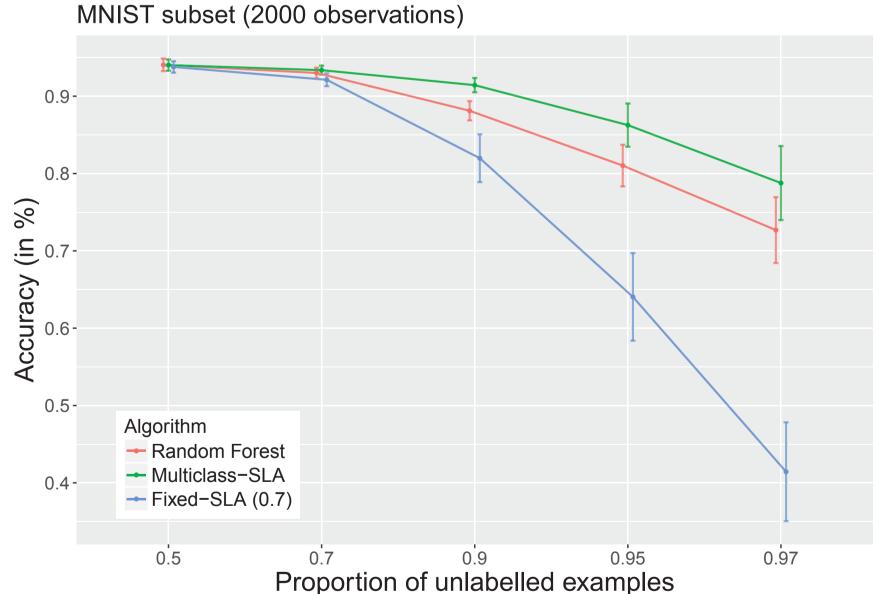
3. Learn a classifier H on the augmented train set with a new loss:

 $\mathcal{L}(H, Z_{\mathcal{L}}, Z_{\mathcal{U}}) = \frac{l + |Z_{\mathcal{U}}|}{l} \mathcal{L}(H, Z_{\mathcal{L}}) + \frac{l + |Z_{\mathcal{U}}|}{|Z_{\mathcal{U}}|} \mathcal{L}(H, Z_{\mathcal{U}}).$

until $X_{\mathcal{U}}$ is empty or no add in the train set. **Output:** The final classifier H.

Multi-class Self-Learning Algorithm (MSLA)

- For the MNIST and the Pendigits datasets the improvement is reported as significant.
- One can notice that regardless the possible benefit MSLA could provide, there is always an unrecoverable error that the basis classifier produces on the initial step of the MSLA.
- In our experiments we have not found a case when the FSLA has any benefit, since it performs worse than the supervised approach.



 $c_{ij} := \begin{cases} 0 & i = j \\ R_{\mathcal{U}}(h, i, j) & i \neq j \end{cases}.$

where u_i is the size of the class *i*. In addition, we consider:

• $m_Q(\mathbf{x}, y) := \mathbb{E}_{h \sim Q} \mathbb{1}_{h(\mathbf{x})=y}$. • $R_{\mathcal{U}\wedge\theta}(B_Q, i, j) := \frac{1}{u_i} \sum_{\mathbf{x}'\in\mathcal{X}_{\mathcal{U}}} \mathbb{1}_{B_Q(\mathbf{x}')=j} \mathbb{1}_{y'=i} \mathbb{1}_{m_Q(\mathbf{x}', j)\geq\theta_j}$ • $\mathbf{E}_{\mathcal{U}\wedge\boldsymbol{\theta}}(B_Q) := \frac{1}{u} \sum_{\mathbf{x}'\in\mathcal{X}_{\mathcal{U}}} \mathbb{1}_{B_Q(\mathbf{x}')\neq y'} \mathbb{1}_{m_Q(\mathbf{x}',B_Q(\mathbf{x}'))\geq\theta_{B_Q}(\mathbf{x}')}$ The error rate and the confusion matrix are connected in the following way:

 $\mathbf{E}_{\mathcal{U}}(h) = \left\| (\mathbf{C}_{h}^{\mathcal{U}})^{\mathsf{T}} \mathbf{p} \right\|_{1}, \text{ where } \mathbf{p} = \{ u_{i}/u \}_{i=1}^{K}.$

The principle of MSLA is first to learn a supervised Bayes classifier over the train examples and then iteratively pseudo-labels unlabeled ones for which the margin for the predicted class is no less than a threshold. Then, a new classifier is learned using the train set augmented by pseudo-labeled examples. The process is repeated until there's nothing to add to the train set. At each step, a threshold is found by minimizing the conditional Bayes error rate:

$$\mathbf{E}_{\mathcal{U}|\boldsymbol{\theta}}(B_Q) := \frac{\mathbf{E}_{\mathcal{U}\wedge\boldsymbol{\theta}}(B_Q)}{\frac{1}{u}\sum_{\mathbf{x}'\in\mathbf{X}_{\mathcal{U}}} \mathbb{1}_{m_Q(\mathbf{x}',B_Q(\mathbf{x}'))\geq\theta_{B_Q(\mathbf{x}')}}}$$

Figure: Classification accuracy w.r.t. the proportion of unlabeled examples for the MNIST dataset.

References

[1] Massih-Reza Amini, François Laviolette, and Nicolas Usunier. A transductive bound for the voted classifier with an application to semi-supervised learning.

In Advances in NIPS 21, Proceedings of the 22nd Annual Conf. on NIPS, Vancouver, Canada, Dec. 8-11, 2008, pages 65–72, 2008.

[2] Vasilii Feofanov, Émilie Devijver, and Massih-Reza Amini.

Une borne transductive multiclasses pour le classifieur de vote majoritaire (work in progress).