

Mantis: Towards a Powerful Foundation Model for Time Series Classification

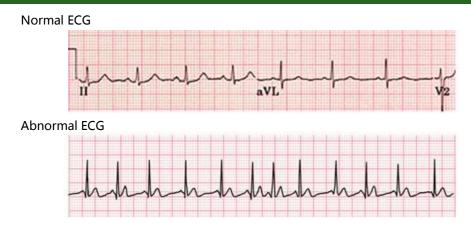
Vasilii Feofanov

Huawei Paris Noah's Ark Lab

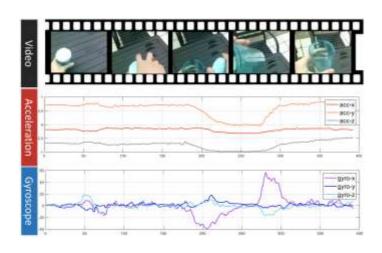
In collaboration with Songkang Wen, Marius Alonso, Romain Ilbert, Hongbo Guo, Malik Tiomoko, Lujia Pan, Jianfeng Zhang, and Ievgen Redko

Paper

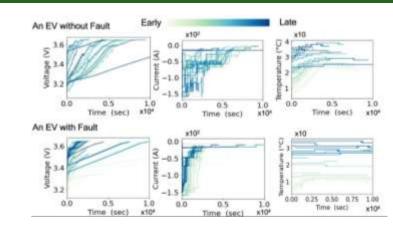
Time Series Classification



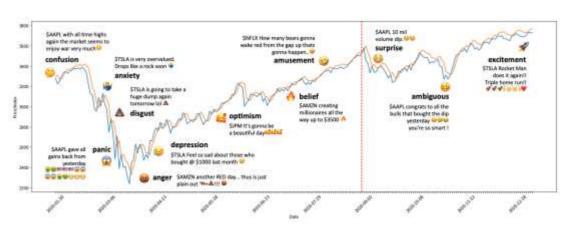
1. Cardiovascular Disease Diagnostic



3. Human Activity Recognition

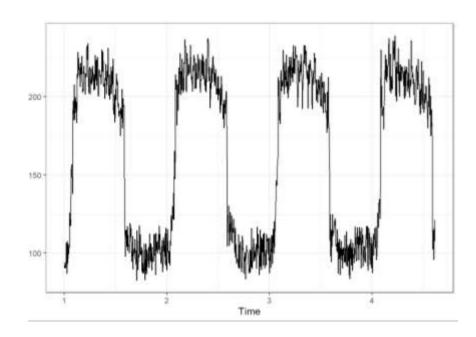


2. Fault Detection of Electric Vehicle's Battery



4. Financial Sentiment Analysis

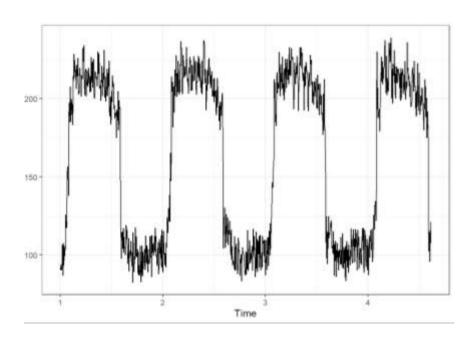
Forecasting vs Classification



Forecasting: predict future patterns based on previously seen ones.

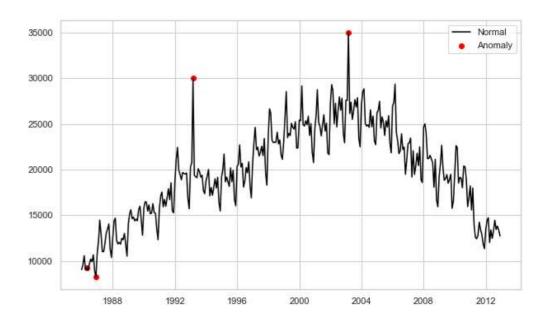
Jittering is often somewhat arbitrary => smoothing may be a good thing.

Forecasting vs Classification



Forecasting: predict future patterns based on previously seen ones.

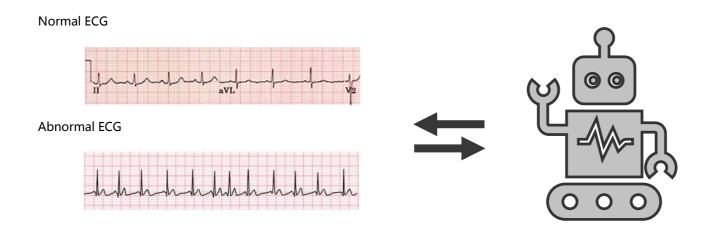
Jittering is often somewhat arbitrary => smoothing may be a good thing.



Classification: discriminate, detect anomalies.

Some spikes are a very important source of information!

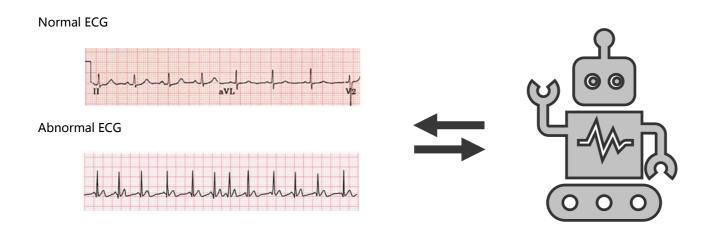
Traditional Machine Learning



Traditional machine learning pipeline:

- 1. Collect training data.
- 2. Train a new model.
- 3. Deploy it.

Traditional Machine Learning



Traditional machine learning pipeline:

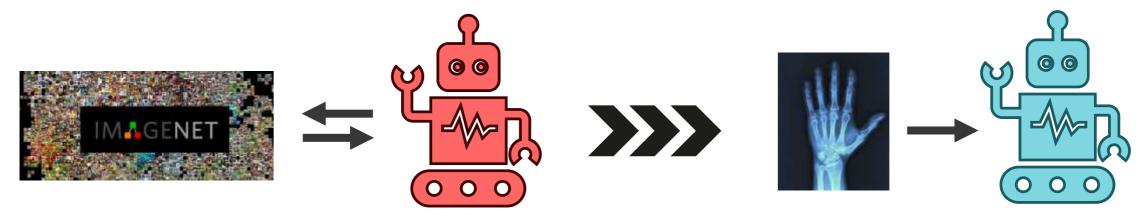
- 1. Collect training data.

 Issue 1: it requires a large training set.
- 2. Train a new model.

 Issue 2: for every new task a new model is needed.
- 3. Deploy it.

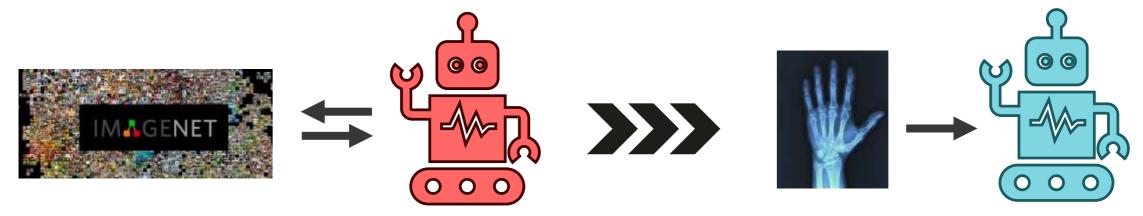
Success of LLM and Pre-training

1. In Computer Vision, models are pre-trained on ImageNet and applied for new problems.

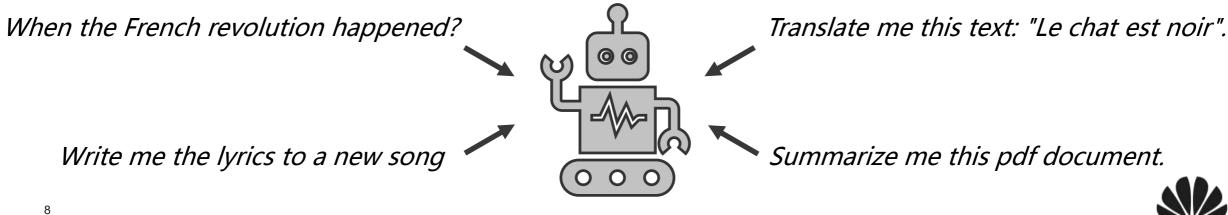


Success of LLM and Pre-training

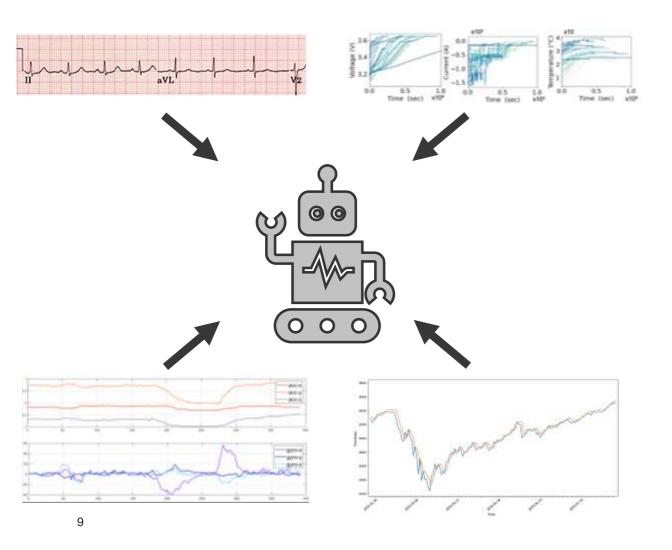
1. In Computer Vision, models are pre-trained on ImageNet and applied for new problems.



2. Large Language Models are versatile and able to solve different problems.



Time Series Foundation Model (TSFM)



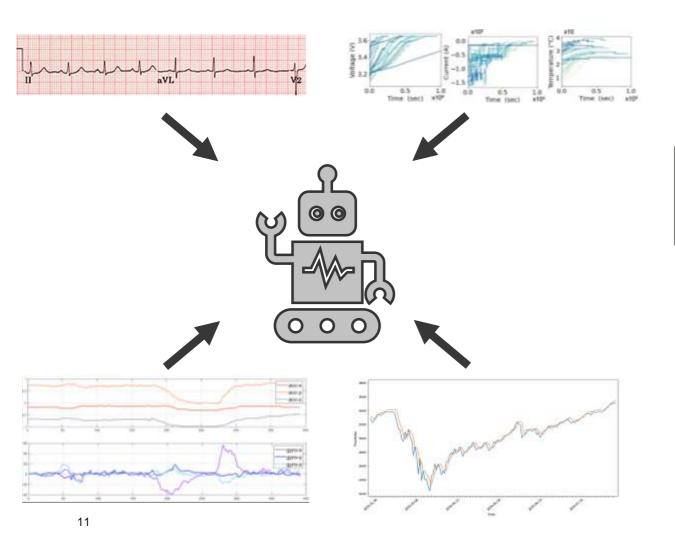
The goal of a TSFM is to learn a projector using a large corpus of various datasets.

Advantages:

- 1. <u>Versatility</u>: one model for different problems.
- 2. Knowledge alignment with a new task.

Mantis: Framework

Time Series Foundation Model (TSFM)



The goal of a TSFM is to learn a projector using a large corpus of various datasets.

Step 0: Data Preparation

- a. Scale to same units.
- b. Fix the context size.
- c. Univariate dataset.

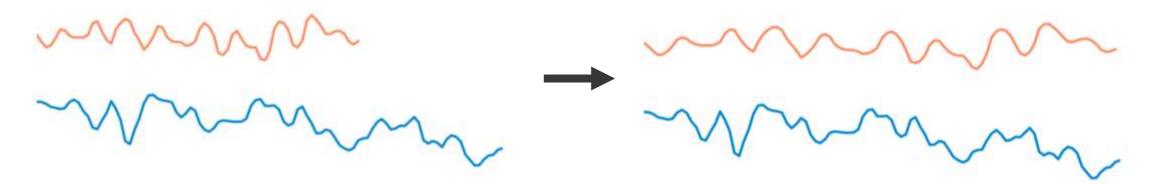
Pre-training Dataset Preparation

1. Instance-Wise Normalization

Pre-training Dataset Preparation

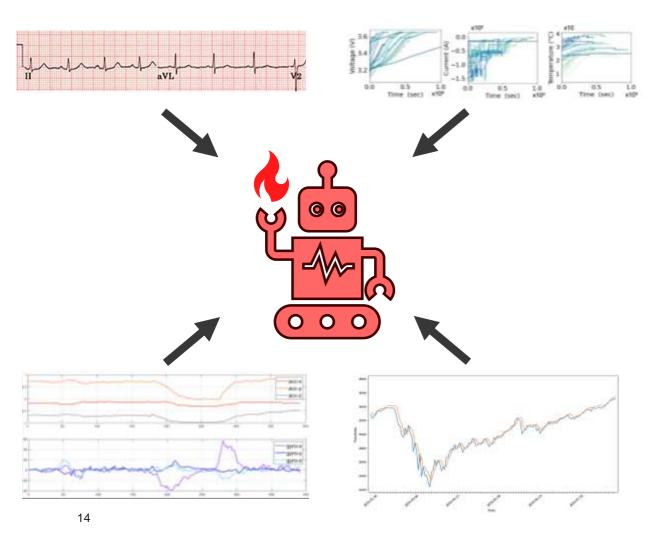
1. Instance-Wise Normalization

2. Resize by Interpolation



Time Series Foundation Model (TSFM)

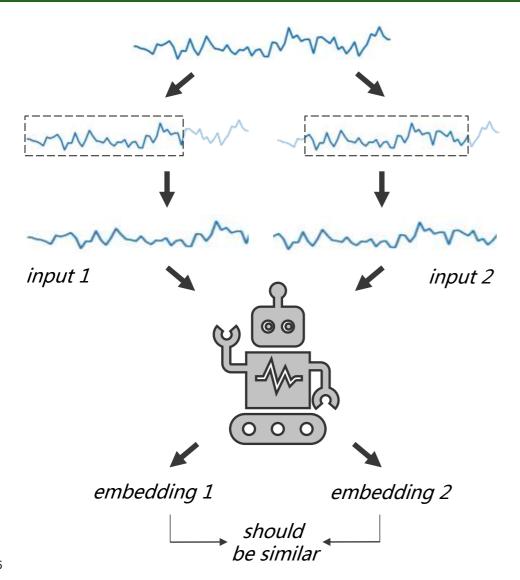
Step 1: Pre-training



Pre-train a projector using one of the two options:

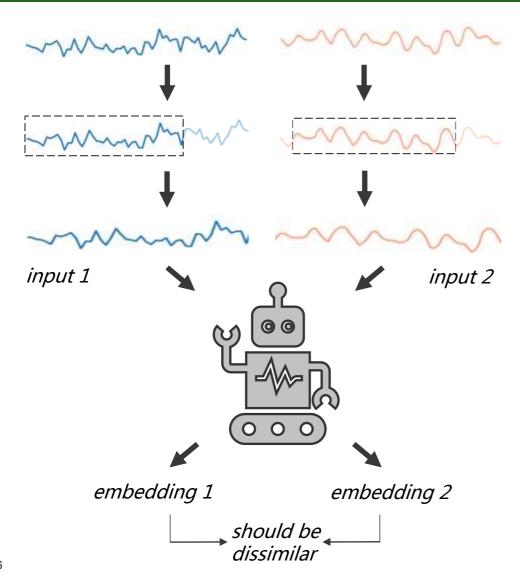
- 1. Unsupervised (self-supervised):
 - a. Contrastive learning.
 - b. Masked reconstruction.
- 2. Supervised (multi-task).

Pre-training by Contrastive Learning



- Make positive pairs close to each other, negative pairs – far away from each other.
- Positive pair: 2 augmentations of the same time series.
- Augmentation: random-crop-resize.

Pre-training by Contrastive Learning



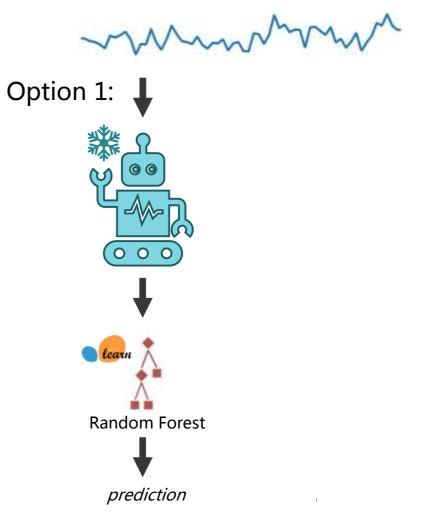
- Make positive pairs close to each other, negative pairs – far away from each other.
- Positive pair: 2 augmentations of the same time series.
- Augmentation: random-crop-resize.
- Negative pair: different examples

Time Series Foundation Model (TSFM)

Step 1: Pre-training

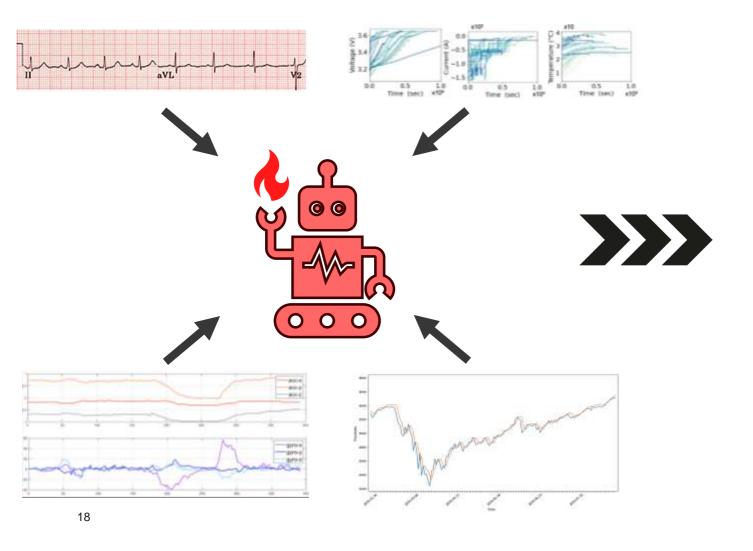


Step 2: Fitting to a New Task

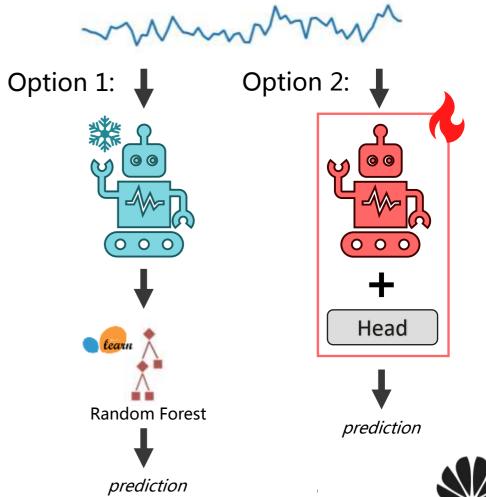


Time Series Foundation Model (TSFM)

Step 1: Pre-training

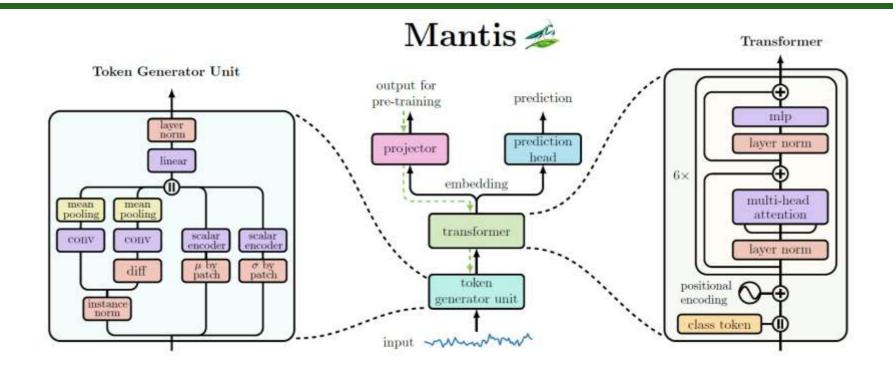


Step 2: Fine-tuning to New Task



Mantis: Architecture

Architecture



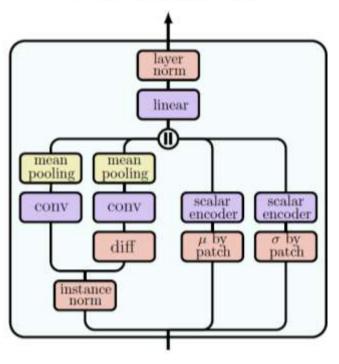
Tokenization is key to unlock the power of the transformer.

- 1. Token Generator Unit: converts time series into meaningful tokens.
- 2. **Transformer:** projects tokens to a new representation space.

1. <u>32 x-patches</u>:

• norm $x \rightarrow conv \rightarrow mean pooling$.

Token Generator Unit

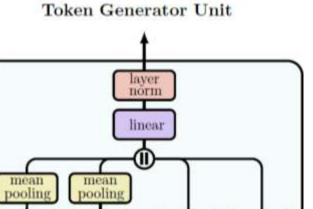


1. <u>32 x-patches</u>:

• norm $x \rightarrow conv \rightarrow mean pooling$.

2. <u>32 diff-x-patches</u>:

- norm $x \rightarrow diff \rightarrow conv \rightarrow mean pooling.$
- diff: x[t]-x[t-1], makes time series stationary.



encoder

patch

conv

norm

scalar

encoder

patch

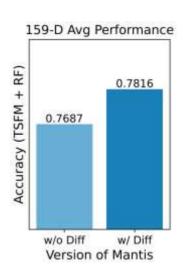
1. <u>32 x-patches</u>:

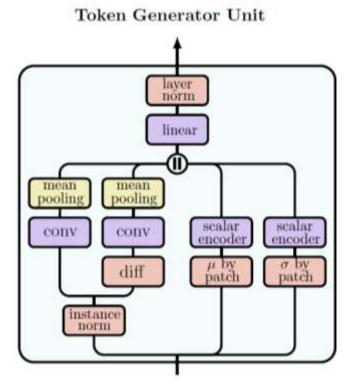
• norm $x \rightarrow conv \rightarrow mean pooling$.

2. <u>32 diff-x-patches</u>:

- norm $x \rightarrow diff \rightarrow conv \rightarrow mean pooling.$
- diff: x[t]-x[t-1], makes time series stationary.

ablation study: diff improves performance.





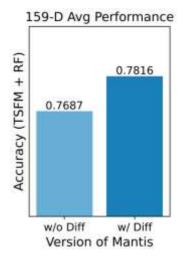
1. <u>32 x-patches</u>:

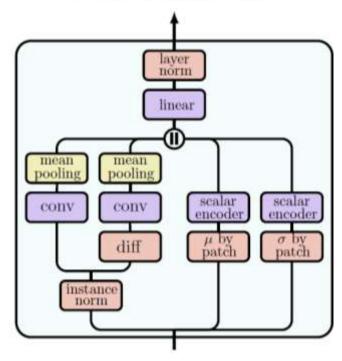
norm x → conv → mean pooling.

2. <u>32 diff-x-patches</u>:

- norm $x \rightarrow diff \rightarrow conv \rightarrow mean pooling.$
- diff: x[t]-x[t-1], makes time series stationary.

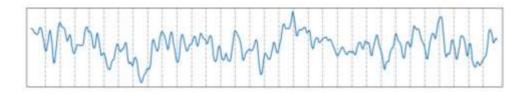
• ablation study: diff improves performance.





3. Scalar encoder (Lin et al., 2024):

- split time series into 32 non-overlapping patches.
- compute μ and σ for each patch.



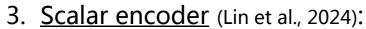
1. <u>32 x-patches</u>:

• norm $x \rightarrow conv \rightarrow mean pooling.$

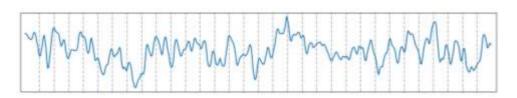
2. <u>32 diff-x-patches</u>:

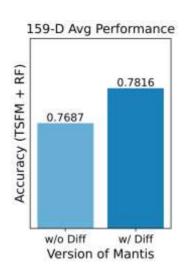
- norm $x \rightarrow diff \rightarrow conv \rightarrow mean pooling.$
- diff: x[t]-x[t-1], makes time series stationary.

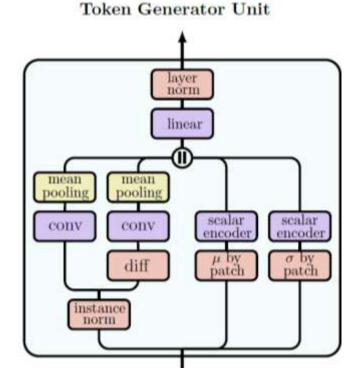
• ablation study: diff improves performance.

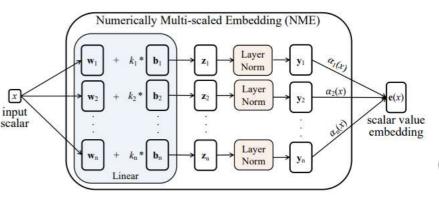


- split time series into 32 non-overlapping patches.
- compute μ and σ for each patch.
- encode each scalar by a high-dimensional vector.









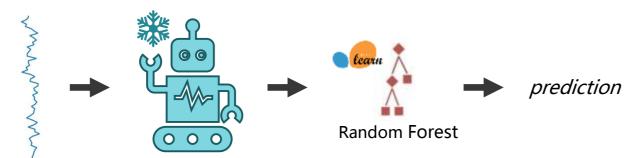
Mantis: Experimental Results

Comparison with Other Methods

Model name	Multivar Support	Zero-shot	HuggingFace Support	Model Size
Mantis	✓	✓	✓	• 0 0
UniTS	✓	×	×	• 0 0
NuTime	✓	✓	×	• 0 0
GPT4TS	✓	×	×	• • 0
MOMENT	×	✓	✓	• • •

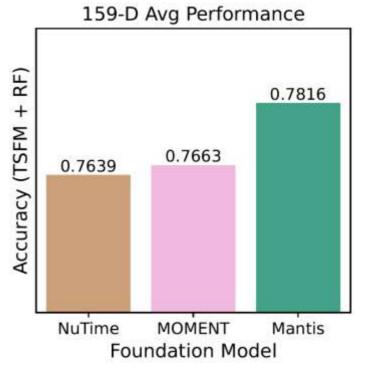
- Mantis: 8M parameters pre-trained on 1.8M samples.
- UniTS: multi-task model with 1M params pre-trained in a supervised way on 0.3M samples.
- NuTime: classification TSFM with 2M params pre-trained on 1.8M samples.
- GPT4TS: 6 pre-trained layers from GPT2 + some layers to fine-tune, 80M params.
- MOMENT: based on T5 architecture, 385M params, 1.13B samples.

Zero-shot Feature Extraction Results



For each dataset:

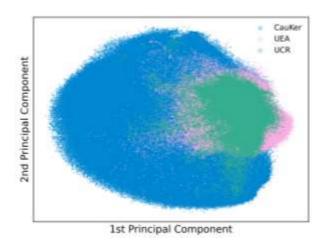
- Extract features for train and test sets
- Learn a Random Forest on train set
- Evaluate accuracy on test set

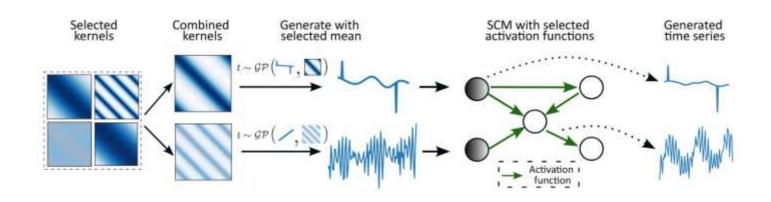


Zero-shot with Synthetic Pre-training Data

<u>CauKer:</u> synthetic data generation algorithm that yields

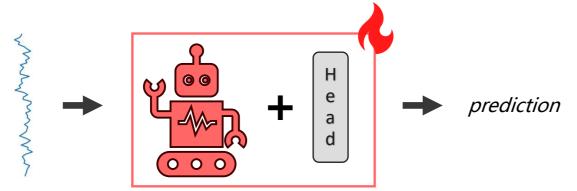
- Large data diversity.
- Sample efficiency.
- Similar performance to real pre-training data.





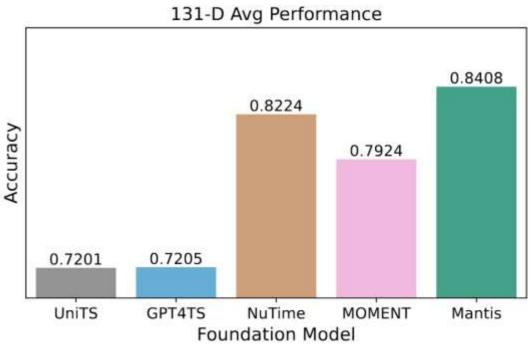
Pre-train Data	Size	UCR Included?	UCR acc. (%)
Real	100K	No	78.29
CAUKER	100K	No	78.81
CAUKER	1M	No	78.98
Real	1.89M	Yes	79.21

Fine-tuning Results



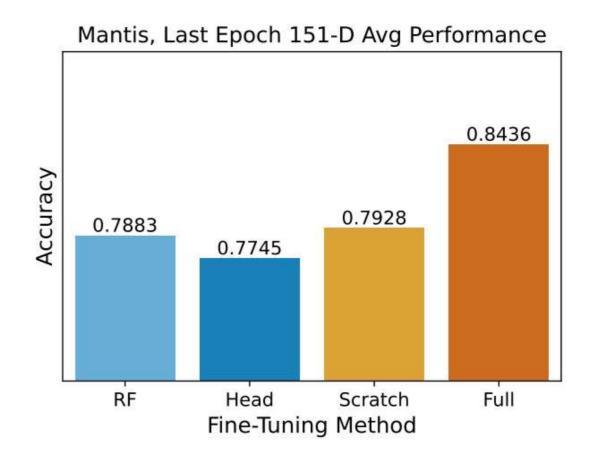
For each dataset:

- Start from the pre-trained model
- Fine-tune it on train set
- Choose best learning rate on validation
- Evaluate accuracy on test set



Influence of Pre-training and Fine-tuning

- RF: pre-trained frozen encoder + random forest for classification.
- Head: pre-trained frozen encoder
 + linear probing.
- Scratch: randomly initialized encoder, full fine-tuning.
- Full: pre-trained encoder, full finetuning.

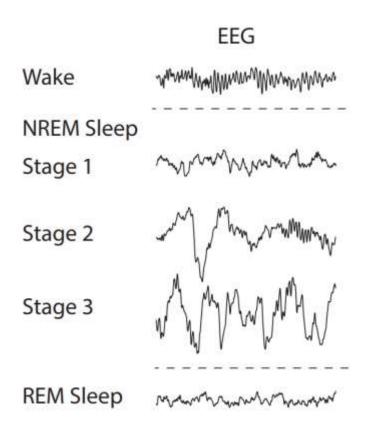


Best performance is achieved with pre-training + fine-tuning.

Application to EEG Sleep Staging

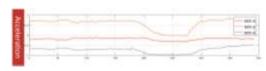
Dataset	EEGNet	CB	raMod	Mantis			
	LLGITE	Random	EEG Pretrain	Random	Real Pretrain	Synth Pretrain	
ABC	$67.94_{\pm 6.52}$	$70.61_{\pm 3.29}$	$74.90_{\pm 4.89}$	$72.82_{\pm 3.89}$	$75.50_{\pm 5.62}$	$75.74_{\pm 4.32}$	
CCSHS	$83.13_{\pm0.10}$	$87.01_{\pm 0.27}$	$88.04_{\pm 0.59}$	88.55 ± 0.39	$88.85_{\pm 0.48}$	$88.80_{\pm0.30}$	
CFS	$78.60_{\pm 1.31}$	$83.48_{\pm0.23}$	$84.30_{\pm 0.08}$	$84.96_{\pm0.43}$	$85.35_{\pm0.35}$	$85.06_{\pm0.75}$	
CHAT	$78.91_{\pm 0.16}$	$84.11_{\pm 0.81}$	$85.01_{\pm 0.42}$	NaN	$85.94_{\pm0.18}$	$85.72_{\pm0.29}$	
HOMEPAP	$69.43_{\pm 0.08}$	$70.37_{\pm 1.90}$	$72.56_{\pm 2.35}$	$71.26_{\pm 1.93}$	$73.14_{\pm 2.09}$	$73.53_{\pm 2.00}$	
MASS	79.85 ± 1.27	$77.40_{\pm 2.18}$	$81.12_{\pm 2.27}$	$79.06_{\pm 1.89}$	$84.09_{\pm 0.85}$	$82.49_{\pm 1.22}$	
PhysioNet	75.73 ± 0.38	$77.19_{\pm 0.94}$	$78.97_{\pm 0.43}$	$77.98_{\pm 0.89}$	$79.82_{\pm 1.63}$	$78.83_{\pm 1.60}$	
SOF	$78.74_{\pm 1.81}$	$82.61_{\pm 0.35}$	$83.39_{\pm 0.67}$	$83.70_{\pm 1.01}$	$84.69_{\pm 0.73}$	$84.31_{\pm 0.57}$	

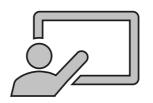
Mantis outperforms EEG foundation model on sleep stage prediction task!

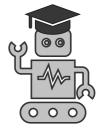


Application to HAR

- Mantis is a good student from a video teacher.
- Zero-shot after distillation matches the fine-tuning performance.







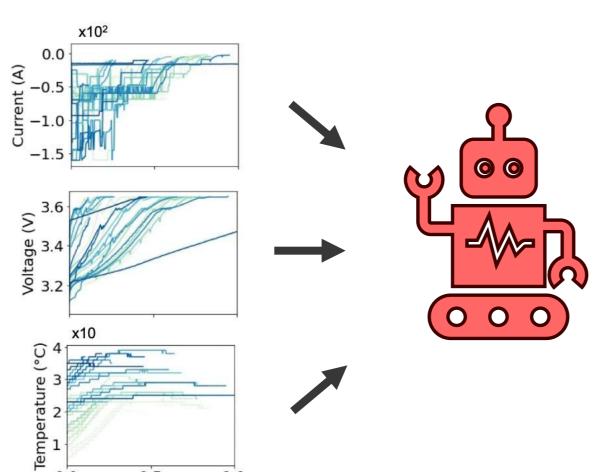
Video Teacher

Time Series Student

	Model		Ego4d		EgoExo4D			MMEA		
		acc@1	acc@3	acc@3	acc@1	acc@3	acc@3	acc@1	acc@3	acc@3
	Moment-Small	39.70	64.47	75.32	68.14	93.55	98.43	83.66	95.52	97.42
Zero-Shot	Mantis	47.49	71.63	81.24	76.47	96.98	99.21	90.96	98.56	99.39
	$TSFormer \rightarrow Mantis$	59.13	78.79	85.65	84.92	98.28	99.59	92.48	99.01	99.77
Fine-Tuned	Moment-Small	57.59	75.91	82.94	79.26	97.04	99.33	84.27	94.76	96.88
Tille-Tulled	Mantis	58.36	76.98	83.76	84.22	97.95	99.41	93.01	98.25	99.01

B. Chen et al. (2025). Comodo: Cross-modal video-to-imu distillation for efficient egocentric human activity recognition. *arXiv:2503.07259*.

Challenge 1: Multivariate Time Series



Mantis and other TSFMs are pre-trained on univariate time series data => treat channels independently.

0.0

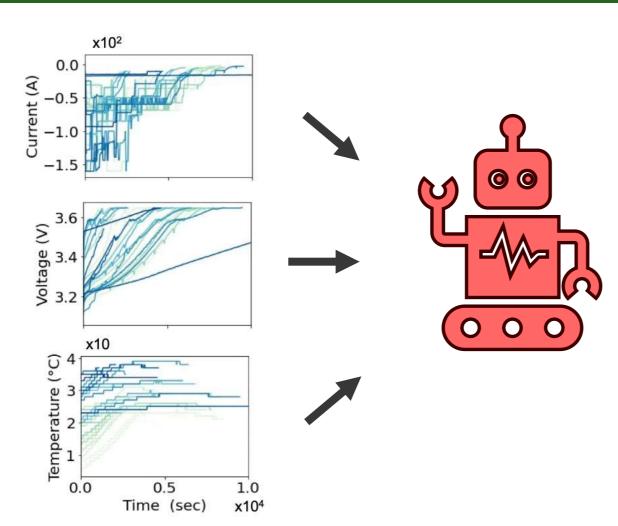
0.5

Time (sec)

1.0

x104

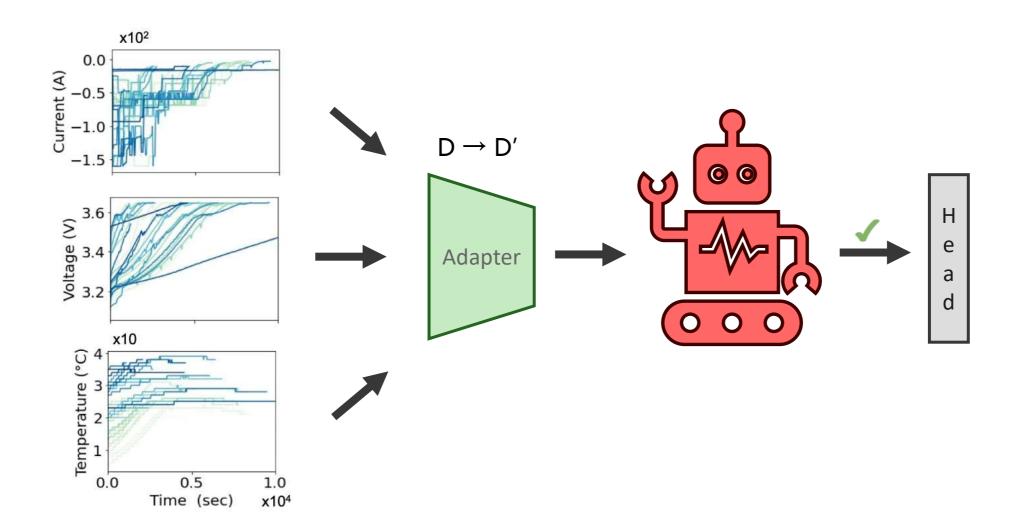
Challenge 1: Multivariate Time Series



Mantis and other TSFMs are pre-trained on univariate time series data => treat channels independently.

Problem: computationally costly, when number of channels is large when full fine-tuning is needed.

Adapters for Multivariate Classification



Adapters for Multivariate Classification

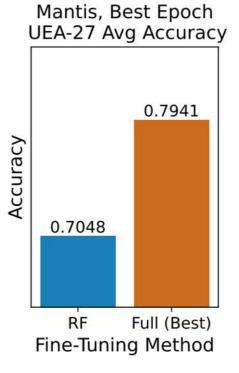
 Number of channels ≥28, full fine-tuning with batch size 256 is not possible on a single V100 without an adapter.

	d	No Adapter
ArticularyWordRecognition	9	0.9933 _{±0.0}
BasicMotions	6	$1.0_{\pm 0.0}$
CharacterTrajectories	3	$0.9928_{\pm 0.0004}$
Cricket	6	$1.0_{\pm 0.0}$
DuckDuckGeese	1345	NaN
ERing	4	$0.9926_{\pm 0.0074}$
EigenWorms	6	$0.8372_{\pm 0.0044}$
Epilepsy	3	$1.0_{\pm 0.0}$
EthanolConcentration	3	$0.4208_{\pm 0.0195}$
FaceDetection	144	NaN
FingerMovements	28	NaN
HandMovementDirection	10	$0.4009_{\pm 0.0206}$
Handwriting	3	$0.482_{\pm 0.0157}$
Heartbeat	61	NaN
InsectWingbeatSubset	200	NaN
JapaneseVowels	12	$0.9811_{\pm 0.0054}$
LSST	6	$0.7109_{\pm 0.0015}$
Libras	2	$0.9389_{\pm0.0}$
MotorImagery	64	NaN
NATOPS	24	$0.937_{\pm 0.0116}$
PEMS-SF	963	NaN
PhonemeSpectra	11	$0.3421_{\pm 0.0023}$
RacketSports	6	$0.9408_{\pm 0.0}$
SelfRegulationSCP1	6	$0.9135_{\pm 0.0071}$
SelfRegulationSCP2	7	$0.5389_{\pm 0.0096}$
SpokenArabicDigits	13	$0.987_{\pm 0.0009}$
UWaveGestureLibrary	3	$0.9438_{\pm 0.0108}$

Adapters for Multivariate Classification

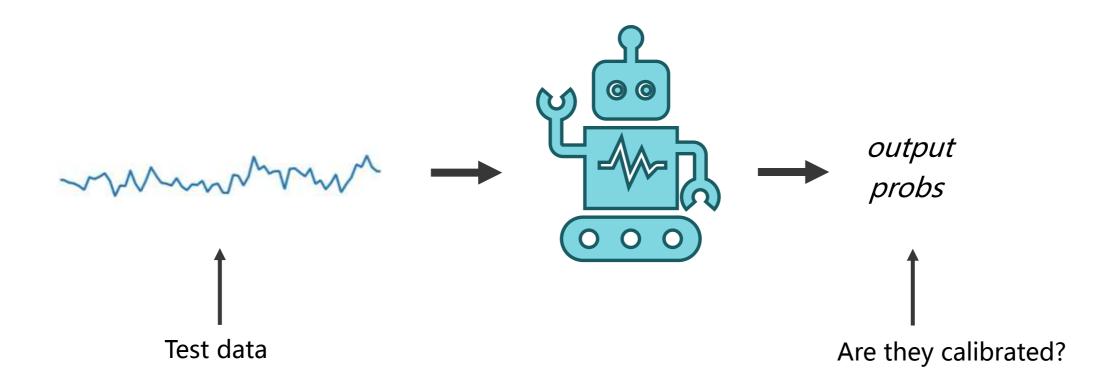
- Number of channels ≥28, full fine-tuning with batch size 256 is not possible on a single V100 without an adapter.
- With adapters, we can fit the computation budget,

 Making full fine-tuning possible on large-dimensional dataset.

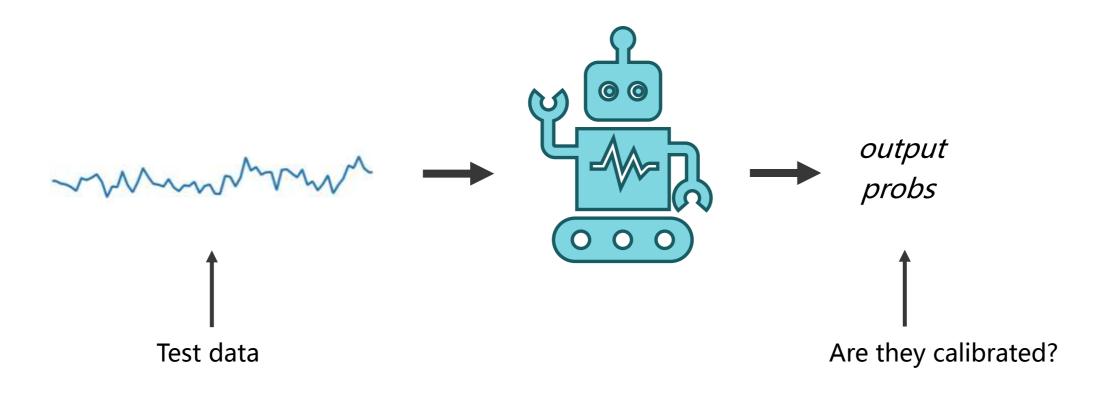


	d	No Adapter
Articulary Word Recognition	9	0.9933 _{±0.0}
BasicMotions	6	$1.0_{\pm 0.0}$
CharacterTrajectories	3	$0.9928_{\pm0.0004}$
Cricket	6	$1.0_{\pm 0.0}$
DuckDuckGeese	1345	NaN
ERing	4	0.9926 _{±0.0074}
EigenWorms	6	$0.8372_{\pm 0.0044}$
Epilepsy	3	$1.0_{\pm 0.0}$
EthanolConcentration	3	$0.4208_{\pm 0.0195}$
FaceDetection	144	NaN
FingerMovements	28	NaN
HandMovementDirection	10	$0.4009_{\pm 0.0206}$
Handwriting	3	$0.482_{\pm 0.0157}$
Heartbeat	61	NaN
InsectWingbeatSubset	200	NaN
JapaneseVowels	12	$0.9811_{\pm 0.0054}$
LSST	6	0.7109 _{±0.0015}
Libras	2	$0.9389_{\pm0.0}$
MotorImagery	64	NaN
NATOPS	24	$0.937_{\pm 0.0116}$
PEMS-SF	963	NaN
PhonemeSpectra	11	$0.3421_{\pm 0.0023}$
RacketSports	6	$0.9408_{\pm 0.0}$
SelfRegulationSCP1	6	$0.9135_{\pm 0.0071}$
SelfRegulationSCP2	7	$0.5389_{\pm 0.0096}$
SpokenArabicDigits	13	$0.987_{\pm 0.0009}$
UWaveGestureLibrary	3	$0.9438_{\pm 0.0108}$

Challenge 2: Uncertainty Quantification

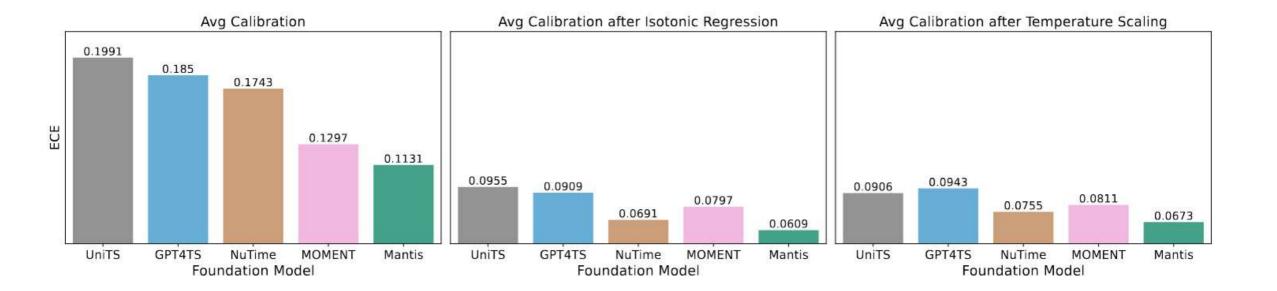


Challenge 2: Uncertainty Quantification



$$\mathbb{P}(Y = \hat{y} \mid \text{conf}(\mathbf{X}) = \alpha) = \alpha, \quad \forall \alpha \in [0, 1]$$

Calibration Experimental Results



Mantis is the most calibrated time series classification foundation model (Before and after post-hoc calibration).

Python Package

Installation

```
pip install mantis-tsfm
```

Init model / load pre-training weights

```
from mantis.architecture import Mantis8M

network = Mantis8M(device='cuda')
network = network.from_pretrained("paris-noah/Mantis-8M")
```

Extract features

```
from mantis.trainer import MantisTrainer

model = MantisTrainer(device='cuda', network=network)
Z = model.transform(X) # X is your time series dataset
```

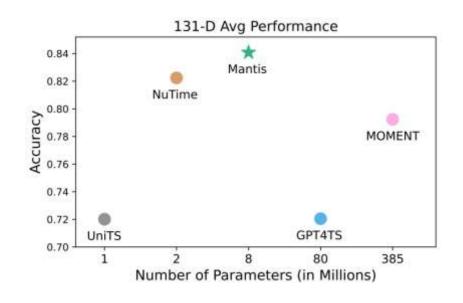
Or directly fine-tune the model

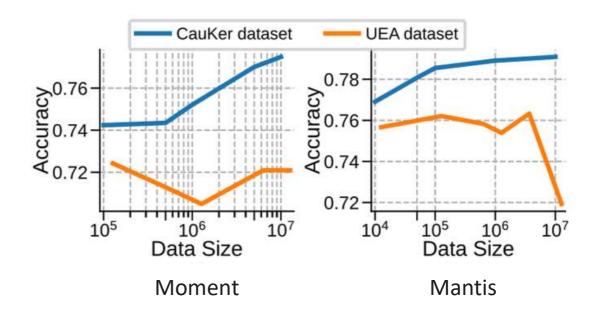
```
from mantis.trainer import MantisTrainer

model = MantisTrainer(device='cuda', network=network)
model.fit(X, y) # y is a vector with class labels
probs = model.predict_proba(X)
y_pred = model.predict(X)
```


Future Work

1. Ensure scaling law.

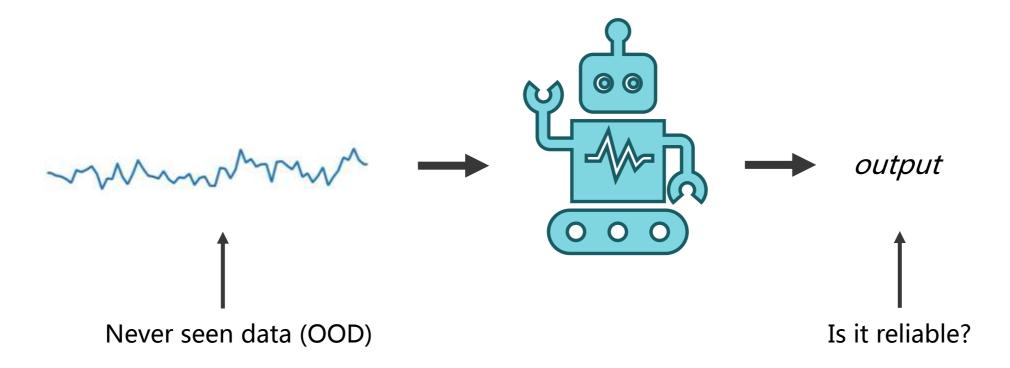




No clear relationship between the model /data size and overall performance!

Future Work

2. Performance prediction.



BERT2S NeurIPS Workshop

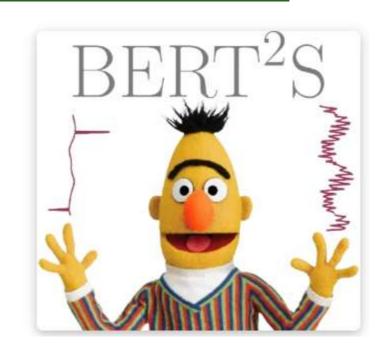
Have we reached the BERT Moment?

Location: San Diego Convention Center, Upper Level Room 24ABC

Date: Sunday 7th December 2025

Second Call for Papers

- Not peer-reviewed.
- Just for a poster presentation.
- Submission deadline: Oct 19, 2025 (11:59 pm AoE)



Thank you for your attention!

