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Artificial Intelligence (AI)

AI is an active field of study these days that explores different
ways to develop machines capable to learn and solve problems.

A great introduction to the history of the artificial intelligence
you can find in the following video.

Figure: https://www.youtube.com/watch?v=8FHBh_OmdsM
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AI and Human Brain Study

One of the directions in AI is to mimic human intelligence:
how human brain perceives information and make decisions.

Promising deep neural networks were originally inspired by
biological neurons, electrically active cells.
The brain has complex networks of connected to each other
neurons that can receive, store or propagate information.

Figure: A map of nerve fibers (axons) in the human brain.
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Biological Neuron

One neuron sends a signal to another one through an axon to
a synapse of a dendrite.

The synapse process the information and can regularize its
amplitude and its frequency.

The cell body receives the processed information via the
dendrite. The neuron decides then whether to fire it further.
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Neuron Model (MuCulloch & Pitts, 1943)

In 1943, a simplified mathematical model of the neuron was
proposed.

Neurons 0, 1, 2 . . . send information x0, x1, x2 . . . . The
synapse determines the strength (weight) of information.

The cell body sums up all information and decides via
activation function whether to propagate it further.
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Perceptron Machine (Rosenblatt, 1958)

Using the neuron model, Rosenblatt implemented an algorithm
in hardware for image recognition of geometric figures.

An array of 20x20 photocells are randomly connected to form
features (input neurons).

The weights represent the resistance of electric motors and
are updated during learning by purely electric process.

Vasilii Feofanov Classification: Part II



6/26

Perceptron Machine (Rosenblatt, 1958)

Using the neuron model, Rosenblatt implemented an algorithm
in hardware for image recognition of geometric figures.

An array of 20x20 photocells are randomly connected to form
features (input neurons).

The weights represent the resistance of electric motors and
are updated during learning by purely electric process.

Vasilii Feofanov Classification: Part II



6/26

Perceptron Machine (Rosenblatt, 1958)

Using the neuron model, Rosenblatt implemented an algorithm
in hardware for image recognition of geometric figures.

An array of 20x20 photocells are randomly connected to form
features (input neurons).

The weights represent the resistance of electric motors and
are updated during learning by purely electric process.

Vasilii Feofanov Classification: Part II



7/26

Perceptron in a Nutshell

Summation: From an image we extract features

x = (x1, . . . , xd) and linearly combine them inside the

decision neuron.

hw(x) := 〈w,x〉+ w0 =
d∑

j=1

wjxj + w0.

Activation: We compare the sign of the true label y and the

output hw(x). If there is no mistake (yhw(x) ≥ 0), the

activation is 1, otherwise, it is -11.

a(x) =

{
+1, if yhw(x) ≥ 0;

−1, if yhw(x) < 0.

1We consider the binary classification framework, i.e. Y = {−1,+1}.
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Margin-Based Learning

We want to find parameters (w0,w) such that the distance
between the misclassified examples and the decision boundary is
minimised.
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Margin-Based Learning

By this, we push the boundary away from correctly classified
examples that will have high margins. In this case, the margin
|hw(x)|
‖w‖ represents the confidence score.
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Perceptron Error Minimisation

We would like to minimise the perceptron error:

L̂(w, w0) = −
∑
i′∈I

yi′(〈w,xi′〉+ w0).

If we take derivatives with respect to the weights:

∂L̂(w)

∂w0
= −

∑
i′∈I

yi′ ,

∇L̂(w) = −
∑
i′∈I

yi′xi′ .

Minimisation of the perceptron error is done by stochastic
gradient descent algorithm:

if y(〈w,x〉+ w0) < 0, then

(
w0

w

)
←
(
w0

w

)
+ η

(
y
yx

)
.
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Update Rule: Illustration
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Perceptron Algorithm

Algorithm Perceptron

Input: Training set S = {xi, yi}ni=1.
Input: Max number of iterations T .
Initialisation: Weights w(0) ← 0, w0 ← 0;
Initialisation: Counter t← 0, learning rate η > 0.
repeat

Choose randomly an example (x(t), y(t)) ∈ S
if y · (

〈
w(t),x(t)

〉
+ w0) < 0 then

w
(t+1)
0 ← w

(t)
0 + η y(t)

w(t+1) ← w(t) + η y(t) x(t)

end if
t← t+ 1

until t > T
Output: (w

(T )
0 ,w(T )).
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Perceptron: Discussion

What is the time complexity during training phase?

What is the time complexity to predict a label for new x?

How to tune learning rate η?

Does the algorithm converge to an exact solution?

Under what condition the algorithm does not converge?
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AI Winter

Large success of the perceptron were followed by public
disappointment and a sharp decline of AI funding.

Minsky and Papert showed that the perceptron is not able to
approximate the XOR operation, a non-linear problem.

Figure: (Minsky & Papert, 1969)

Figure: Minsky and Papert in 1971.

Figure: The XOR operation.
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Backpropagation Learning (Rumelhart et al., 1985)

In the 1980’s, the perceptron returned as multi-layer : a hidden
layer of neurons connects the input and the output layers.
The weights are updated layer by layer propagating errors
back through the whole network (backpropagation).
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Deep Learning

Nowadays, with large computational resources, the neural
networks has become deep with a large number of hidden
layers of different functionality.

The goal is not only prediction itself, but also learning new
appropriate data representation for better prediction.
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Emerging In Practice Questions

How to select a learning model with the best accuracy
score2 on unseen examples?

How to tune hyperparameters of an algorithm?

Are there metrics that take into account imbalance in
classes? Importance of one class over another one?

2The accuracy score is the proportion of correctly predicted examples.
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Performance of an Algorithm

(a) Undefitting (b) Appropriate (c) Overfitting

Underfitting: The classifier does not fit data and has a large
error value.

Overfitting: Being perfect on training data, the classifier has
poor generalization making lots of mistakes on new examples.

What we want: The classifier does not take into account
noise in the training data and approximates well the true
boundary.
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Misclassification Error Estimation

Given the data sample S = {xi, yi}ni=1, are the following estimates
of the misclassification error good (in terms of bias/variance)?

Compute error on the same examples the model was trained?

No! Among various models we will choose the one that is
optimistically biased. This is exactly overfitting.

Split the data into two parts: one is used for training, error is
evaluated on the examples of the second one?

This is appropriate. The method is widely used when the
number of examples n is large. However, when n is small, we
cherish every example we have due to the risk of underfitting.

Data is divided by k folds, one fold is for evaluation and k − 1
rest are for training; the errors are averaged over k rounds?

Cross-validation (CV) is the most popular approach. It reduces
not only the bias, but also the data variability used for training.
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CV: How Many Folds to Choose?

The smaller k, the less number of examples we use for
training. If k is large, we train too many classifiers.
For medium/large sample sizes, usual choices of k are 5 or 10.
If the sample size n is really small, the popular paradigm is to
take k = n, a.k.a. the leave-one-out (LOO) cross-validation.

Data Set

Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

Ex. 1 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

Ex. 1 Ex. 2 Ex. 4 Ex. 5 Ex. 6 Ex. 7

Ex. 1 Ex. 2 Ex. 3 Ex. 5 Ex. 6 Ex. 7

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 6 Ex. 7

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 7

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Ex. 5

Ex. 6

Ex. 7

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Figure: LOO for a data set with 7 examples (blue = train, orange = test).
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Hyperparameter Tuning

The CV can be also used to find the best hyperparameter (k
for knn, η for perceptron, etc.).

We define a grid of values (e.g. η ∈ {0.01, 0.1, 1}) and
compute the CV score for each parameter value.

Then, we select a model with the best CV-score.

However, there is still a chance of overfitting. If you wanna be
on the safe side, one of the following strategy can be applied.
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Model Calibration + Performance Estimation

Data Set

Train Validation Test

Strategy 1: Split into three parts: learn models on Train,
choose the best hyperparameter on Validation, estimate the
performance on Test. By the cv-score we choose the best
hyper- parameter, which is used then to learn a final model
using all examples from the first part.
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Model Calibration + Performance Estimation

Data Set

Fold 1 TestFold 3 Fold 4 Fold 5Fold 2

Cross-validation

Strategy 2: Split into two parts: The first part is used to
perform CV. By the cv-score we choose the best hyper-
parameter, which is used then to learn a final model using all
examples from the first part. Finally, the performance is
estimated on Test.
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Model Calibration + Performance Estimation

Data Set

Fold 1 Fold 3 Fold 4Fold 2

Nested Cross-validation

Fold 5

Strategy 3: We average the effect of choosing the best
hyperparameter: at each round, k − 2 folds are used for
learning, orange fold is for estimating performance of the
hyperparameter chosen on the purple fold. The final cv-score
is the average performance over k orange folds.
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Confusion Matrix

To see the difference between the predicted and the true
outputs in more detail, the confusion matrix can be used.

Its (i, j)-entry is the number of examples that were assigned
to a class j given the true label is i.

Real

Prediction

n = 200 −1 +1

−1 65 5

+1 7 123
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To see the difference between the predicted and the true
outputs in more detail, the confusion matrix can be used.

Its (i, j)-entry is the number of examples that were assigned
to a class j given the true label is i.

In the binary classification, the entries are named as follows:
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Class Imbalance

The class imbalance is an often situation in real applications.
For instance, the number of patients without a disease (-1)
can be much larger than with it (+1).

In this case, the accuracy score might be not the best choice
to evaluate the prediction quality.

Example: Classifier 2 is better in terms of accuracy. However,
we would like to choose Classifier 1, because it predicts less
frequently ”no disease” given a diseased patient (small FN).

Real

Prediction

blank

n = 200 −1 +1

−1 150 20

+1 3 27

(a) Classifier 1.

Real

Prediction

blank

n = 200 −1 +1

−1 170 0

+1 20 10

(b) Classifier 2.

Figure: Confusion matrices of two classifiers.
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Sensitivity and Specificity

If we want to minimize FN, the sensivity (a.k.a. recall) score
can be used to choose the best model:

SEN =
TP

TP+ FN
.

If we want to minimize FP, the specificity score can be used:

SPE =
TN

TN+ FP
.

Finally, with the balanced accuracy we minimize both FP and
FN discarding the effect of the class distribution:

BACC =
SPE+ SEN

2
.
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R Script

To see a simple example of classfication in R, please go to
Chamilo:

Lectures → Classification Part II → R script with a

classification example
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