

Classification: Part I

Statistical Analysis and Document Mining

Spring 2021

Vasilii Feofanov

Université Grenoble Alpes vasilii.feofanov@univ-grenoble-alpes.fr

1 Classification: First Sight

- 1.1 Introduction
- 1.2 k Nearest Neighbours Algorithm

Probabilistic Classification

- 2.1 Problem Statement
- 2.2 Bayes Classifier
- 2.3 Linear Discriminant Analysis

 During first weeks of the course, you studied the regression task, where the target variable is continuous, which represents usually in practice some measurement.

- During first weeks of the course, you studied the regression task, where the target variable is continuous, which represents usually in practice some measurement.
- However, in many applications, the target variable is discrete and indicates to which sub-category an observation belongs.

- During first weeks of the course, you studied the regression task, where the target variable is continuous, which represents usually in practice some measurement.
- However, in many applications, the target variable is discrete and indicates to which sub-category an observation belongs.
- For example:

In pattern recognition, a task can be to recognize a handwritten digit;

- During first weeks of the course, you studied the regression task, where the target variable is continuous, which represents usually in practice some measurement.
- However, in many applications, the target variable is discrete and indicates to which sub-category an observation belongs.
- For example:

In visual tracking, it is important to recognize who (e.g. what animal) is on the image;

- During first weeks of the course, you studied the regression task, where the target variable is continuous, which represents usually in practice some measurement.
- However, in many applications, the target variable is discrete and indicates to which sub-category an observation belongs.
- For example:

Some recommender systems are aimed to predict which product we recommend to a given customer;

- During first weeks of the course, you studied the regression task, where the target variable is continuous, which represents usually in practice some measurement.
- However, in many applications, the target variable is discrete and indicates to which sub-category an observation belongs.
- For example:

In bioinformatics, one of the task is to predict a gene type given a DNA sequence.

Classical Data Set: Iris Flower (1936)

(a) Iris Setosa

(b) Iris Versicolor

(c) Iris Virginica

Figure: The data set consists of 50 samples from each of 3 species of Iris. From each sample the length and the width of the sepals and petals were measured. Based on this, the goal is to build a model that distinguishes the species from each other.¹

¹https://en.wikipedia.org/wiki/Iris_flower_data_set

- Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$: collected samples with class labels;
- A new data point x without any label;
- Build a classifier $h(\mathbf{x})$ that predicts y as accurately as possible:

Sepal.L Sepal.W Petal.L Petal.W
$$(6.2, 2.8, 5.6, 2.4) \xrightarrow{?} y = "Virginica"$$

How to do that?

Iris Classification

Let's try to predict the type of iris' species based on Petal Length and Petal Width. Below is the plot of our training data.

Fisher's Iris data set

Iris: New Data Point

Imagine we have a new observation (the black point). How we can predict its label given training observations?

Fisher's Iris data set

4 Nearest Neighbours

Assumption: examples from one class are close to each other in terms of distance. Find the 4 closest points to the black point.

Vasilii Feofanov

We predict that our new example is Virginica, since the 3 of 4 neighbours were from this class.

Fisher's Iris data set

Another Data Point

Another example: what class we predict this time?

Yes, right! It belongs to Setosa.

One More Example

2.5-. . 2.0-. . . . Petal Width ۸ 1.5-۸ 1.0 5 3 4 6 ż Petal Length

What to do in this case?

Fisher's Iris data set

We can generalize this approach to \boldsymbol{k} nearest neighbours.

Algorithm k Nearest Neighbours (kNN)

- **Input:** Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$; Number of classes K; New data point \mathbf{x} .
- **1.** Compute distance $d(\mathbf{x}, \mathbf{x}_i)$ for $i = \{1, \dots, n\}$.

2. Find k closest training examples to **x**:

$$\begin{aligned} J \subset \{1, \dots, n\} \quad \text{s.t.} \quad |J| = k; \\ \forall j \in J, \forall t \in \{1, \dots, n\} \setminus J : d(\mathbf{x}, \mathbf{x}_j) \leq d(\mathbf{x}, \mathbf{x}_t). \end{aligned}$$

Output: Majority class $h(\mathbf{x}) = \operatorname{argmax}_{c=1,\dots,K} \sum_{j \in J} \mathbb{I}(y_j = c)$.

Input: Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$; Number of classes K; New data point \mathbf{x} .

- **1.** Compute distance $d(\mathbf{x}, \mathbf{x}_i)$ for $i = \{1, \dots, n\}$.
- 2. Find k closest training examples to x:

$$\begin{split} J \subset \{1, \dots, n\} \quad \text{s.t.} \quad |J| = k; \\ \forall j \in J, \forall t \in \{1, \dots, n\} \setminus J : \operatorname{d}(\mathbf{x}, \mathbf{x}_j) \leq \operatorname{d}(\mathbf{x}, \mathbf{x}_t). \end{split}$$

Output: Majority class $h(\mathbf{x}) = \operatorname{argmax}_{c=1,\dots,K} \sum_{j \in J} \mathbb{I}(y_j = c)$.

Input: Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$; Number of classes K; New data point \mathbf{x} .

- **1.** Compute distance $d(\mathbf{x}, \mathbf{x}_i)$ for $i = \{1, \dots, n\}$.
- 2. Find k closest training examples to x:

$$\begin{split} J \subset \{1, \dots, n\} \quad \text{s.t.} \quad |J| = k; \\ \forall j \in J, \forall t \in \{1, \dots, n\} \setminus J : \mathrm{d}(\mathbf{x}, \mathbf{x}_j) \leq \mathrm{d}(\mathbf{x}, \mathbf{x}_t). \end{split}$$

Output: Majority class $h(\mathbf{x}) = \operatorname{argmax}_{c=1,\dots,K} \sum_{j \in J} \mathbb{I}(y_j = c)$.

What is the time complexity of the algorithm?

Input: Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$; Number of classes K; New data point \mathbf{x} .

- **1.** Compute distance $d(\mathbf{x}, \mathbf{x}_i)$ for $i = \{1, \dots, n\}$.
- 2. Find k closest training examples to x:

$$\begin{split} J \subset \{1, \dots, n\} \quad \text{s.t.} \quad |J| = k; \\ \forall j \in J, \forall t \in \{1, \dots, n\} \setminus J : \operatorname{d}(\mathbf{x}, \mathbf{x}_j) \leq \operatorname{d}(\mathbf{x}, \mathbf{x}_t). \end{split}$$

Output: Majority class $h(\mathbf{x}) = \operatorname{argmax}_{c=1,\dots,K} \sum_{j \in J} \mathbb{I}(y_j = c)$.

How does the choice of k affect kNN?

Input: Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$; Number of classes K; New data point \mathbf{x} .

- **1.** Compute distance $d(\mathbf{x}, \mathbf{x}_i)$ for $i = \{1, \ldots, n\}$.
- **2.** Find k closest training examples to **x**:

$$\begin{split} J \subset \{1, \dots, n\} \quad \text{s.t.} \quad |J| = k; \\ \forall j \in J, \forall t \in \{1, \dots, n\} \setminus J : \operatorname{d}(\mathbf{x}, \mathbf{x}_j) \leq \operatorname{d}(\mathbf{x}, \mathbf{x}_t). \end{split}$$

Output: Majority class $h(\mathbf{x}) = \operatorname{argmax}_{c=1,\dots,K} \sum_{j \in J} \mathbb{I}(y_j = c)$.

How does the choice of distance metric affect the algorithm?

Input: Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$; Number of classes K; New data point \mathbf{x} .

- **1.** Compute distance $d(\mathbf{x}, \mathbf{x}_i)$ for $i = \{1, \ldots, n\}$.
- **2.** Find k closest training examples to **x**:

$$\begin{split} J \subset \{1, \dots, n\} \quad \text{s.t.} \quad |J| = k; \\ \forall j \in J, \forall t \in \{1, \dots, n\} \setminus J : \operatorname{d}(\mathbf{x}, \mathbf{x}_j) \leq \operatorname{d}(\mathbf{x}, \mathbf{x}_t). \end{split}$$

Output: Majority class $h(\mathbf{x}) = \operatorname{argmax}_{c=1,\dots,K} \sum_{j \in J} \mathbb{I}(y_j = c)$.

Is the nearest neighbours approach applicable for the regression task?

Input: Training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$; Number of classes K; New data point \mathbf{x} .

- **1.** Compute distance $d(\mathbf{x}, \mathbf{x}_i)$ for $i = \{1, \dots, n\}$.
- 2. Find k closest training examples to x:

$$\begin{split} J \subset \{1, \dots, n\} \quad \text{s.t.} \quad |J| = k; \\ \forall j \in J, \forall t \in \{1, \dots, n\} \setminus J : \mathrm{d}(\mathbf{x}, \mathbf{x}_j) \leq \mathrm{d}(\mathbf{x}, \mathbf{x}_t). \end{split}$$

Output: Majority class $h(\mathbf{x}) = \operatorname{argmax}_{c=1,\dots,K} \sum_{j \in J} \mathbb{I}(y_j = c)$.

kNN is an *instance-based* learning algorithm. What is the main drawback of such methods?

Classification: First Sight
 1.1 Introduction
 1.2 k Nearest Neighbours Algorithm

2 Probabilistic Classification

- 2.1 Problem Statement
- 2.2 Bayes Classifier
- 2.3 Linear Discriminant Analysis

Discriminant Analysis (Fisher, 1936)

A historically first classification algorithm was proposed by Ronald Fisher who studied the problem in the probabilistic way.

Figure: Ronald A. Fisher in 1946.

- Input space: $\mathcal{X} \subseteq \mathbb{R}^d$;
- Output space: $\mathcal{Y} = \{-1, +1\}$ (binary classification), $\mathcal{Y} = \{1, \dots, K\}$ (multi-class classification);
- Assumption: all $(\mathbf{X}, Y) \in \mathcal{X} \times \mathcal{Y}$ are **i.i.d.** with respect to a fixed unknown probability distribution $P(\mathbf{X}, Y)$;
- Sample Data: we observe $S = {\mathbf{x}_i, y_i}_{i=1}^n$;

- Input space: $\mathcal{X} \subseteq \mathbb{R}^d$;
- Output space: $\mathcal{Y} = \{-1, +1\}$ (binary classification), $\mathcal{Y} = \{1, \dots, K\}$ (multi-class classification);
- Assumption: all $(\mathbf{X}, Y) \in \mathcal{X} \times \mathcal{Y}$ are **i.i.d.** with respect to a fixed unknown probability distribution $P(\mathbf{X}, Y)$;
- Sample Data: we observe $S = {\mathbf{x}_i, y_i}_{i=1}^n$;
- Loss Function: $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$;
- Target: minimise the risk $R^{\ell}(h) := \mathbb{E}_{P(\mathbf{X},Y)} \ell(h(\mathbf{X}),Y)$, where $h : \mathcal{X} \to \mathcal{Y}$ is a classifier.

 $0/1 \mbox{ loss function has the following view:}$

$$\ell^{0/1}(h(\mathbf{x}), y) = \mathbb{I}(h(\mathbf{x}) \neq y) = \begin{cases} 1, & \text{if } h(\mathbf{x}) \neq y; \\ 0, & \text{if } h(\mathbf{x}) = y. \end{cases}$$

 $0/1 \mbox{ loss function has the following view:}$

$$\ell^{0/1}(h(\mathbf{x}), y) = \mathbb{I}(h(\mathbf{x}) \neq y) = \begin{cases} 1, & \text{if } h(\mathbf{x}) \neq y; \\ 0, & \text{if } h(\mathbf{x}) = y. \end{cases}$$

In this case, the risk is written as:

$$\begin{split} R(h) &= P(h(\mathbf{X}) \neq Y) \quad \leftarrow \text{Also called misclassification probability} \\ &= \sum_{c \in \{1, \dots, K\}} P(Y = c) P(h(\mathbf{X}) \neq c | Y = c). \end{split}$$

0/1 loss function has the following view:

$$\ell^{0/1}(h(\mathbf{x}), y) = \mathbb{I}(h(\mathbf{x}) \neq y) = \begin{cases} 1, & \text{if } h(\mathbf{x}) \neq y; \\ 0, & \text{if } h(\mathbf{x}) = y. \end{cases}$$

In this case, the risk is written as:

$$\begin{split} R(h) &= P(h(\mathbf{X}) \neq Y) \quad \leftarrow \text{Also called misclassification probability} \\ &= \sum_{c \in \{1, \dots, K\}} P(Y = c) P(h(\mathbf{X}) \neq c | Y = c). \end{split}$$

In the binary case, it is represented as:

$$R(h) = P(Y = -1)P(h(\mathbf{X}) = 1|Y = -1) + P(Y = 1)P(h(\mathbf{X}) = -1|Y = 1)$$

Classification in Terms of Distributions

Our training data is drawn from a mixture of distributions, where $P(\mathbf{X}|Y = c)$ is a distribution of the class c.

Classification in Terms of Distributions

Question: how to partition data so that the misclassification probability is small?

Idea: Classify \mathbf{x} to a class with the highest posterior probability:

$$h_B(\mathbf{x}) := \operatorname*{argmax}_{y \in \mathcal{Y}} P(Y = y | \mathbf{X} = \mathbf{x}).$$

This is equivalent to:

$$h_B(\mathbf{x}) \propto \operatorname*{argmax}_{y \in \mathcal{Y}} P(\mathbf{X} = \mathbf{x} | Y = y) P(Y = y).$$

The method is often called the Bayes classifier.

In the binary case ($\mathcal{Y} = \{-1, +1\}$), the Bayes classifier is usually defined in the following way:

$$h_B(\mathbf{x}) = \begin{cases} +1, & \text{if } P(Y = +1 | \mathbf{X} = \mathbf{x}) \ge P(Y = -1 | \mathbf{X} = \mathbf{x}); \\ -1, & \text{if } P(Y = +1 | \mathbf{X} = \mathbf{x}) < P(Y = -1 | \mathbf{X} = \mathbf{x}). \end{cases}$$

Particular Case: Maximum Likelihood Estimator

If we assume that priors are equal (P(Y = +1) = P(Y = -1)), the Bayes classifier separates the class distributions as follows:

Theorem

Suppose P(Y) and $P(\mathbf{X}|Y)$ are given. Then the Bayes classifier yields the minimum of the misclassification error.

Exercise: Prove this theorem.

Theorem

Suppose P(Y) and $P(\mathbf{X}|Y)$ are given. Then the Bayes classifier yields the minimum of the misclassification error.

Exercise: Prove this theorem.

 $P(h(\mathbf{X}) \neq Y) = \int P(h(\mathbf{X}) \neq Y | \mathbf{X} = \mathbf{x}) dP(\mathbf{X} = \mathbf{x}).$ Then, what is the value of $P(h_B(\mathbf{X}) \neq Y | \mathbf{X} = \mathbf{x})$?

Theorem

Suppose P(Y) and $P(\mathbf{X}|Y)$ are given. Then the Bayes classifier yields the minimum of the misclassification error.

Exercise: Prove this theorem.

- $P(h(\mathbf{X}) \neq Y) = \int P(h(\mathbf{X}) \neq Y | \mathbf{X} = \mathbf{x}) dP(\mathbf{X} = \mathbf{x}).$ Then, what is the value of $P(h_B(\mathbf{X}) \neq Y | \mathbf{X} = \mathbf{x})$?
- 2 $P(h_B(\mathbf{x}) \neq Y | \mathbf{X} = \mathbf{x}) = 1 \max_{c \in \mathcal{Y}} P(Y = c | \mathbf{X} = \mathbf{x})$. Does this prove the theorem?

• Can we estimate P(Y)?

• Can we estimate P(Y)?

• We can.
$$P(Y = c) \approx \frac{\sum_{i=1}^{n} \mathbb{I}(y_i = c)}{n}$$
.

• Can we estimate P(Y)?

• We can.
$$P(Y = c) \approx \frac{\sum_{i=1}^{n} \mathbb{I}(y_i = c)}{n}$$
.

• Can we estimate $P(\mathbf{X}|Y)$?

• Can we estimate P(Y)?

• We can.
$$P(Y = c) \approx \frac{\sum_{i=1}^{n} \mathbb{I}(y_i = c)}{n}$$
.

- Can we estimate $P(\mathbf{X}|Y)$?
 - Hmm... Not clear. Maybe we need to make additional assumptions.

• Assumption 1: Observations from a class $c \in \mathcal{Y}$ are normally distributed $[\mathbf{X}|Y = c] \sim \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$.

• Remember the formula of the multivariate normal distribution.

- Assumption 1: Observations from a class $c \in \mathcal{Y}$ are normally distributed $[\mathbf{X}|Y = c] \sim \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$.
 - Remember the formula of the multivariate normal distribution.

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \mathsf{det}(\boldsymbol{\varSigma})^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_c)^{\mathsf{T}} \boldsymbol{\varSigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}_c)}.$$

- Assumption 1: Observations from a class $c \in \mathcal{Y}$ are normally distributed $[\mathbf{X}|Y = c] \sim \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$.
 - Remember the formula of the multivariate normal distribution.

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \mathsf{det}(\boldsymbol{\varSigma})^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_c)^{\mathsf{T}} \boldsymbol{\varSigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}_c)}.$$

Assumption 2: The covariance matrices of the classes are equal:

$$\Sigma_1 = \cdots = \Sigma_K = \Sigma.$$

Due to the logarithm properties, the Bayes classifier can be written as follows:

$$h_B(\mathbf{x}) = \operatorname*{argmax}_{c \in \mathcal{Y}} [\ln P(\mathbf{X} = \mathbf{x} | Y = c) + \ln P(Y = c)].$$

Due to the logarithm properties, the Bayes classifier can be written as follows:

$$h_B(\mathbf{x}) = \operatorname*{argmax}_{c \in \mathcal{Y}} [\ln P(\mathbf{X} = \mathbf{x} | Y = c) + \ln P(Y = c)].$$

Taking into account Assumption 1 and Assumption 2, we derive the algorithm called *Linear Discriminant Analysis (LDA)*:

$$h_{LDA}(\mathbf{x}) = \operatorname*{argmax}_{c \in \mathcal{Y}} \delta_c(\mathbf{x}),$$

$$\delta_c(\mathbf{x}) = \boldsymbol{\mu}_c^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \ln P(Y = c);$$

 δ_c is usually called the *discriminant function*.

$$h_{LDA}(\mathbf{x}) = \begin{cases} +1, & \text{if } \delta_{+1} - \delta_{-1} \ge 0; \\ -1, & \text{otherwise,} \end{cases}$$

where
$$\delta_{+1} - \delta_{-1}$$
 is:
 $(\mu_{+1} - \mu_{-1})^{\mathsf{T}} \Sigma^{-1} \mathbf{x} - \frac{1}{2} (\mu_{+1} - \mu_{-1})^{\mathsf{T}} \Sigma^{-1} (\mu_{+1} + \mu_{-1}) + \ln \frac{P(Y = +1)}{P(Y = -1)}.$

In the binary case, the decision rule can be also written as:

$$h_{LDA}(\mathbf{x}) = \begin{cases} +1, & \text{if } \delta_{+1} - \delta_{-1} \ge 0; \\ -1, & \text{otherwise,} \end{cases}$$

where
$$\delta_{+1} - \delta_{-1}$$
 is:
 $(\mu_{+1} - \mu_{-1})^{\mathsf{T}} \Sigma^{-1} \mathbf{x} - \frac{1}{2} (\mu_{+1} - \mu_{-1})^{\mathsf{T}} \Sigma^{-1} (\mu_{+1} + \mu_{-1}) + \ln \frac{P(Y = +1)}{P(Y = -1)}.$

Why it is called "linear"?

In the binary case, the decision rule can be also written as:

$$h_{LDA}(\mathbf{x}) = \begin{cases} +1, & \text{if } \delta_{+1} - \delta_{-1} \ge 0; \\ -1, & \text{otherwise,} \end{cases}$$

where
$$\delta_{+1} - \delta_{-1}$$
 is:

$$\overbrace{(\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}}^{\mathbf{a}^{\mathsf{T}}} \mathbf{x} - \overbrace{\frac{1}{2} (\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{+1} + \boldsymbol{\mu}_{-1}) + \ln \frac{P(Y = +1)}{P(Y = -1)}}^{\mathbf{b}}.$$

Why it is called "linear"?

How many parameters we need to estimate?

$$h_{LDA}(\mathbf{x}) = \begin{cases} +1, & \text{if } \delta_{+1} - \delta_{-1} \ge 0; \\ -1, & \text{otherwise,} \end{cases}$$

where
$$\delta_{+1} - \delta_{-1}$$
 is:

$$\overbrace{(\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}}^{\mathbf{a}^{\mathsf{T}}} \mathbf{x} - \overbrace{\frac{1}{2} (\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{+1} + \boldsymbol{\mu}_{-1}) + \ln \frac{P(Y = +1)}{P(Y = -1)}}^{\mathbf{b}}.$$

- Why it is called "linear"?
- How many parameters we need to estimate?
- What happens when Assumption 1, 2 are violated?

$$h_{LDA}(\mathbf{x}) = \begin{cases} +1, & \text{if } \delta_{+1} - \delta_{-1} \ge 0; \\ -1, & \text{otherwise,} \end{cases}$$

where
$$\delta_{+1} - \delta_{-1}$$
 is:

$$\overbrace{(\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}}^{\mathbf{a}^{\mathsf{T}}} \mathbf{x} - \overbrace{\frac{1}{2} (\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{+1} + \boldsymbol{\mu}_{-1}) + \ln \frac{P(Y = +1)}{P(Y = -1)}}^{\mathbf{b}}.$$

- Why it is called "linear"?
- How many parameters we need to estimate?
- What happens when Assumption 1, 2 are violated?
- What is the time complexity during training phase?

$$h_{LDA}(\mathbf{x}) = \begin{cases} +1, & \text{if } \delta_{+1} - \delta_{-1} \ge 0; \\ -1, & \text{otherwise,} \end{cases}$$

where
$$\delta_{+1} - \delta_{-1}$$
 is:

$$\underbrace{(\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}}_{\mathbf{a}} \mathbf{x} - \underbrace{\frac{\mathbf{b}}{\mathbf{b}}}_{2} (\boldsymbol{\mu}_{+1} - \boldsymbol{\mu}_{-1})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{+1} + \boldsymbol{\mu}_{-1}) + \ln \frac{P(Y = +1)}{P(Y = -1)}.$$

- Why it is called "linear"?
- How many parameters we need to estimate?
- What happens when Assumption 1, 2 are violated?
- What is the time complexity during training phase?
- What is the time complexity to predict a label for new x?