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Introduction

During first weeks of the course, you studied the regression
task, where the target variable is continuous, which represents
usually in practice some measurement.

However, in many applications, the target variable is discrete
and indicates to which sub-category an observation belongs.

Computer Vision:

For example:
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During first weeks of the course, you studied the regression
task, where the target variable is continuous, which represents
usually in practice some measurement.

However, in many applications, the target variable is discrete
and indicates to which sub-category an observation belongs.

For example:
In pattern recognition, a task can be to recognize a
handwritten digit;
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Introduction

During first weeks of the course, you studied the regression
task, where the target variable is continuous, which represents
usually in practice some measurement.

However, in many applications, the target variable is discrete
and indicates to which sub-category an observation belongs.

For example:
In visual tracking, it is important to recognize who (e.g. what
animal) is on the image;
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Introduction

During first weeks of the course, you studied the regression
task, where the target variable is continuous, which represents
usually in practice some measurement.

However, in many applications, the target variable is discrete
and indicates to which sub-category an observation belongs.

For example:
Some recommender systems are aimed to predict which
product we recommend to a given customer;
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Introduction

During first weeks of the course, you studied the regression
task, where the target variable is continuous, which represents
usually in practice some measurement.

However, in many applications, the target variable is discrete
and indicates to which sub-category an observation belongs.

For example:
In bioinformatics, one of the task is to predict a gene type
given a DNA sequence.
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Classical Data Set: Iris Flower (1936)

(a) Iris Setosa (b) Iris Versicolor (c) Iris Virginica

Figure: The data set consists of 50 samples from each of 3 species of Iris.
From each sample the length and the width of the sepals and petals were
measured. Based on this, the goal is to build a model that distinguishes
the species from each other.1

1https://en.wikipedia.org/wiki/Iris_flower_data_set
Vasilii Feofanov Classification: Part I
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Classification: Simple Formulation

Training set {xi, yi}ni=1: collected samples with class labels;

A new data point x without any label;

Build a classifier h(x) that predicts y as accurately as possible:

Sepal.L Sepal.W Petal.L Petal.W

x = (6.2, 2.8, 5.6, 2.4)
?−→ y = "Virginica"

How to do that?
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Iris Classification

Let’s try to predict the type of iris’ species based on Petal Length
and Petal Width. Below is the plot of our training data.
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Iris: New Data Point

Imagine we have a new observation (the black point). How we can
predict its label given training observations?
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4 Nearest Neighbours

Assumption: examples from one class are close to each other in
terms of distance. Find the 4 closest points to the black point.
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4NN Classification

We predict that our new example is Virginica, since the 3 of 4
neighbours were from this class.
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Another Data Point

Another example: what class we predict this time?
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And Its Prediction

Yes, right! It belongs to Setosa.
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One More Example
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What to do in this case?
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kNN Algorithm

We can generalize this approach to k nearest neighbours.

Algorithm k Nearest Neighbours (kNN)

Input: Training set {xi, yi}ni=1;
Input: Number of classes K;
Input: New data point x.
1. Compute distance d(x,xi) for i = {1, . . . , n}.
2. Find k closest training examples to x:

J ⊂ {1, . . . , n} s.t. |J | = k;

∀j ∈ J, ∀t ∈ {1, . . . , n} \J : d(x,xj) ≤ d(x,xt).

Output: Majority class h(x) = argmaxc=1,...,K

∑
j∈J I(yj = c).
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kNN Algorithm

Algorithm k Nearest Neighbours (kNN)

Input: Training set {xi, yi}ni=1;
Input: Number of classes K;
Input: New data point x.
1. Compute distance d(x,xi) for i = {1, . . . , n}.
2. Find k closest training examples to x:
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∀j ∈ J, ∀t ∈ {1, . . . , n} \J : d(x,xj) ≤ d(x,xt).

Output: Majority class h(x) = argmaxc=1,...,K

∑
j∈J I(yj = c).

Is the nearest neighbours approach applicable for the
regression task?
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kNN Algorithm

Algorithm k Nearest Neighbours (kNN)

Input: Training set {xi, yi}ni=1;
Input: Number of classes K;
Input: New data point x.
1. Compute distance d(x,xi) for i = {1, . . . , n}.
2. Find k closest training examples to x:

J ⊂ {1, . . . , n} s.t. |J | = k;

∀j ∈ J, ∀t ∈ {1, . . . , n} \J : d(x,xj) ≤ d(x,xt).

Output: Majority class h(x) = argmaxc=1,...,K

∑
j∈J I(yj = c).

kNN is an instance-based learning algorithm. What is the
main drawback of such methods?
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Discriminant Analysis (Fisher, 1936)

A historically first classification algorithm was proposed by Ronald
Fisher who studied the problem in the probabilistic way.

Figure: Ronald A. Fisher in 1946.
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Classification Task: More Formally

Input space: X ⊆ Rd;

Output space: Y = {−1,+1} (binary classification),
Output space: Y = {1, . . . ,K} (multi-class classification);

Assumption: all (X, Y ) ∈ X × Y are i.i.d. with respect to a
fixed unknown probability distribution P (X, Y );

Sample Data: we observe S = {xi, yi}ni=1;

Loss Function: ` : Y × Y → R+;

Target: minimise the risk R`(h) := EP (X,Y ) `(h(X), Y ),
where h : X → Y is a classifier.

Vasilii Feofanov Classification: Part I
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0/1 Loss Function

0/1 loss function has the following view:

`0/1(h(x), y) = I(h(x) 6= y) =

{
1, if h(x) 6= y;

0, if h(x) = y.

In this case, the risk is written as:

R(h) = P (h(X) 6= Y ) ← Also called misclassification probability

=
∑

c∈{1,...,K}

P (Y = c)P (h(X) 6= c|Y = c).

In the binary case, it is represented as:

R(h) = P (Y = −1)P (h(X) = 1|Y = −1)+P (Y = 1)P (h(X) = −1|Y = 1)

Vasilii Feofanov Classification: Part I
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Classification in Terms of Distributions

Our training data is drawn from a mixture of distributions, where
P (X|Y = c) is a distribution of the class c.

P(X|Y=−1)

P(X|Y=1)
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Classification in Terms of Distributions

Question: how to partition data so that the misclassification
probability is small?

P(X|Y=−1)

P(X|Y=1)

?
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Bayes’ Rule

P (Y |X) =
P (X|Y )P (Y )

P (X)

Posterior
Likelihood Class Prior

Evidence
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Maximum A Posteriori Rule

Idea: Classify x to a class with the highest posterior

probability:

hB(x) := argmax
y∈Y

P (Y = y|X = x).

This is equivalent to:

hB(x) ∝ argmax
y∈Y

P (X = x|Y = y)P (Y = y).

The method is often called the Bayes classifier.
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Bayes Classifier in the Binary Case

In the binary case (Y = {−1,+1}), the Bayes classifier is
usually defined in the following way:

hB(x) =

{
+1, if P (Y = +1|X = x) ≥ P (Y = −1|X = x);

−1, if P (Y = +1|X = x) < P (Y = −1|X = x).

Vasilii Feofanov Classification: Part I
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Particular Case: Maximum Likelihood Estimator

If we assume that priors are equal (P (Y = +1) = P (Y = −1)),
the Bayes classifier separates the class distributions as follows:

P(X|Y=−1)

P(X|Y=1)

h(X)=−1 h(X)=1
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Bayes Classifier Is Optimal

Theorem

Suppose P (Y ) and P (X|Y ) are given. Then the Bayes classifier
yields the minimum of the misclassification error.

Exercise: Prove this theorem.

1 P (h(X) 6= Y ) =
∫
P (h(X) 6= Y |X = x)dP (X = x). Then,

what is the value of P (hB(X) 6= Y |X = x)?

2 P (hB(x) 6= Y |X = x) = 1−maxc∈Y P (Y = c|X = x). Does
this prove the theorem?
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Bayes Classifier: Discussion

In practice, we don’t have any information about data
distribution.

Can we estimate P (Y )?

We can. P (Y = c) ≈
∑n

i=1 I(yi=c)

n .

Can we estimate P (X|Y )?

Hmm... Not clear. Maybe we need to make additional
assumptions.
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Additional Assumptions

Assumption 1: Observations from a class c ∈ Y are
normally distributed [X|Y = c] ∼ N (µc,Σc).

Remember the formula of the multivariate normal distribution.

f(x) =
1

(2π)d/2det(Σ)1/2
e−

1
2 (x−µc)

ᵀΣ−1(x−µc).

Assumption 2: The covariance matrices of the classes are
equal:

Σ1 = · · · = ΣK = Σ.
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Linear Discriminant Analysis

Due to the logarithm properties, the Bayes classifier can be written
as follows:

hB(x) = argmax
c∈Y

[ lnP (X = x|Y = c) + lnP (Y = c)].

Taking into account Assumption 1 and Assumption 2, we derive
the algorithm called Linear Discriminant Analysis (LDA):

hLDA(x) = argmax
c∈Y

δc(x),

δc(x) = µᵀ
cΣ
−1x− 1

2
µᵀ
cΣ
−1µc + lnP (Y = c);

δc is usually called the discriminant function.
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LDA in the Binary Case

In the binary case, the decision rule can be also written as:

hLDA(x) =

{
+1, if δ+1 − δ−1 ≥ 0;

−1, otherwise,

where δ+1 − δ−1 is:

(µ+1−µ−1)
ᵀΣ−1x− 1

2
(µ+1−µ−1)

ᵀΣ−1(µ+1+µ−1)+ ln
P (Y = +1)

P (Y = −1)
.

Why it is called ”linear”?

How many parameters we need to estimate?

What happens when Assumption 1, 2 are violated?

What is the time complexity during training phase?

What is the time complexity to predict a label for new x?

Vasilii Feofanov Classification: Part I



27/27

LDA in the Binary Case

In the binary case, the decision rule can be also written as:

hLDA(x) =

{
+1, if δ+1 − δ−1 ≥ 0;

−1, otherwise,

where δ+1 − δ−1 is:

(µ+1−µ−1)
ᵀΣ−1x− 1

2
(µ+1−µ−1)

ᵀΣ−1(µ+1+µ−1)+ ln
P (Y = +1)

P (Y = −1)
.

Why it is called ”linear”?

How many parameters we need to estimate?

What happens when Assumption 1, 2 are violated?

What is the time complexity during training phase?

What is the time complexity to predict a label for new x?

Vasilii Feofanov Classification: Part I



27/27

LDA in the Binary Case

In the binary case, the decision rule can be also written as:

hLDA(x) =

{
+1, if δ+1 − δ−1 ≥ 0;

−1, otherwise,

where δ+1 − δ−1 is:

aᵀ︷ ︸︸ ︷
(µ+1 − µ−1)

ᵀΣ−1 x−

b︷ ︸︸ ︷
1

2
(µ+1 − µ−1)

ᵀΣ−1(µ+1 + µ−1) + ln
P (Y = +1)

P (Y = −1)
.

Why it is called ”linear”?

How many parameters we need to estimate?

What happens when Assumption 1, 2 are violated?

What is the time complexity during training phase?

What is the time complexity to predict a label for new x?

Vasilii Feofanov Classification: Part I



27/27

LDA in the Binary Case

In the binary case, the decision rule can be also written as:

hLDA(x) =

{
+1, if δ+1 − δ−1 ≥ 0;

−1, otherwise,

where δ+1 − δ−1 is:

aᵀ︷ ︸︸ ︷
(µ+1 − µ−1)

ᵀΣ−1 x−

b︷ ︸︸ ︷
1

2
(µ+1 − µ−1)

ᵀΣ−1(µ+1 + µ−1) + ln
P (Y = +1)

P (Y = −1)
.

Why it is called ”linear”?

How many parameters we need to estimate?

What happens when Assumption 1, 2 are violated?

What is the time complexity during training phase?

What is the time complexity to predict a label for new x?

Vasilii Feofanov Classification: Part I



27/27

LDA in the Binary Case

In the binary case, the decision rule can be also written as:
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ᵀΣ−1 x−
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(µ+1 − µ−1)

ᵀΣ−1(µ+1 + µ−1) + ln
P (Y = +1)

P (Y = −1)
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