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Introduction

In many applications, labeling examples is prohibitive while huge number

of unlabeled data are available.
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Introduction

Supervised Learning:
Labeled data {(xi, yi)}li=1.

⇓
Semi-supervised Learning:
Both labeled {(xi, yi)}li=1 and unlabeled data {x′i}l+ui=l+1

⇑
Unsupervised Learning:
Unlabeled data {xi}ui=1.
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Introduction

Example of partially labeled data
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Introduction

Problem: Supervised learning is not efficient to use.

(a) Supervised classifier (b) Semi-supervised classifier
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Introduction

Solution: Classifier that pass through the low density regions of
both labeled and unlabeled examples.

(a) Supervised classifier (b) Semi-supervised classifier
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Related Work and Motivation

We consider the transductive inference. The self-learning
algorithm (SLA) is based on this paradigm. In
[Amini et al., 2008] it was proposed to find a threshold for the
binary SLA dynamically using a risk bound.

PAC-Bayesian theorems [McAllester, 1999] bound risk of
Gibbs and Bayes classifiers. Most of study is devoted to the
binary framework. [Morvant et al., 2012] considers the
multi-class case in the supervised setting.
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Contribution

In this work, we propose:

1 Transductive bounds of the Bayes classifier,

2 A multi-class extension of the self-learning algorithm.
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Bayes Classifier

BQ(x) := argmaxc∈Y [Eh∼QI(h(x) = c)]
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Gibbs Classifier

GQ(x) := randh∼Qh(x)
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Margin: Indicator of Confidence

mQ(x, c) = Eh∼QI(h(x) = c)
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Error Measures

Conditional risk:

RU (BQ, i, j) :=
1
ui

∑
x′∈XU I(BQ(x

′) = j)I(y′ = i),

RU (GQ, i, j) :=
1
ui

∑
x′∈XU Eh∼QI(h(x

′) = j)I(y′ = i),
The error to predict j given class i.

Error rate:

EU (h) :=
1
u

∑
x′∈XU I(h(x

′) 6= y′),

Confusion matrix:

CUh := (RU (h, i, j))i,j={1,...,K}2
i 6=j

,

Joint conditional risk:

RU∧θ(BQ, i, j) :=
1
ui

∑
x′∈XU I(BQ(x

′) = j)I(y′ = i)I(mQ(x
′, j) ≥ θj), – risk to

have the conditional error and the margin above θj
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A Transductive Bound for the Conditional Risk

Theorem

∀ Q and ∀δ ∈ (0, 1], ∀θ ∈ [0, 1]K with prob. at least 1− δ:

RU∧θ(BQ, i, j) ≤ inf
γ∈[θj ,1]

{
I
(≤,<)
i,j (θj , γ) +

1

γ

⌊
(Kδ

i,j −M<
i,j(γ) +M<

i,j(θj))
⌋
+

}
,

where

Kδ
i,j = Rδu(GQ, i, j)− εi,j ,

Rδu(GQ, i, j) is an upper bound that holds with prob. at least 1− δ.
εi,j is the average of j-margins in class i and class j is not predicted,

I
(≤,<)
i,j (θj , γ) is proportion of obs. from i with margin in interval [θj , γ),

M<
i,j(t) is the average of j-margins in class i that less than t.

Proof
Bound derived from a solution of a linear program where the error is maximized.

Constraint: connection between RU∧θ(BQ, i, j) and RU (GQ, i, j).

The solution of linear program is explicit and is computed in practice.
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Theorem: Remarks

Proposition

Suppose

The Gibbs conditional risk bound is tight,

The Bayes classifier makes its mistakes mostly on examples with low
margins

⇒ the bound is tight.

Corollary

Let Uδ
θ := (RδU (BQ, i, j))i,j={1,...,K}2

i 6=j
,

where RδU (BQ, i, j) is defined by Theorem. Then, we have:

EU∧θ(BQ) ≤
∥∥∥(Uδ

θ

)ᵀ
p
∥∥∥
1
,

where p = {ui/u}Ki=1.
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Conditional Bayes Error

We look for θ that minimizes:

EU|θ(BQ) :=
EU∧θ(BQ)

π(mQ(x′, BQ(x′)) ≥ θBQ(x′))
.

A trade-off between:

Transductive error on pseudo-labeled examples (estimated
using Theorem),

Proportion of pseudo-labeled examples in XU .
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Multi-class Self-learning Algorithm
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Multi-class Self-learning Algorithm

Ẑ` ← ∅

ZL Classifier

XU ← XU\{x′}

Ẑ` ← Ẑ` ∪ {(x′, ŷ′)}

x′ ∈ XU

0

1

θ

Thresholding θ

θ = argminθ∈[0,1]K EU|θ(BQ)

ŷ′
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Classifier

x′ ∈ XU

0

1

θk

Thresholding θ

θ = argminθ∈[0,1]K EU|θ(BQ)

ŷ′
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Ẑ` ← Ẑ` ∪ {(x′, ŷ′)}
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Experiment Results on Different Data Sets

Data set Info Score RF LP OVA-TSVM FSLA θ=0.7 MSLA

Vowel

l = 99
u = 891 ACC .583± .026 .577± .027 NA .516↓ ± .043 .592± .027
d = 10
K = 11 F1 .572± .028 .568± .026 NA .493↓ ± .046 .580± .030

DNA

l = 31
u = 3155 ACC .693↓ ± .072 .538↓ ± .039 .812± .039 .516↓ ± .09 .706↓ ± .083
d = 180
K = 3 F1 .65↓ ± .109 .535↓ ± .044 .812± .038 .372↓ ± .096 .663↓ ± .118

Pendigits

l = 109
u = 10883 ACC .864↓ ± .022 .777↓ ± .052 .667↓ ± .023 .847↓ ± .035 .887± .019
d = 16
K = 10 F1 .861↓ ± .025 .756↓ ± .069 .656↓ ± .021 .842↓ ± .042 .885± .02

MNIST

l = 175
u = 69825 ACC .865↓ ± .018 NA NA .8↓ ± .059 .909± .018
d = 900
K = 10 F1 .863↓ ± .019 NA NA .774↓ ± .077 .909± .018

SensIT

l = 49
u = 98479 ACC .67± .0291 NA NA .619↓ ± .037 .675± .029
d = 100
K = 3 F1 .654± .045 NA NA .578↓ ± .068 .66± .042

Table: Classification performance on 5 data sets.
↓: the performance is statistically worse than the best result on the level 0.01 of
significance.
NA: the algorithm does not converge.
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Conclusion and Perspectives

Proposed transductive bounds for the Bayes classifier, which are tight
under certain conditions.

Self-learning with automatic threshold finding shows promising results for
semi-supervised tasks.

Future perspective: self-learning with semi-supervised feature selection.

The source code:
github.com/vfeofanov/trans-bounds-maj-vote

References
Amini, M., Laviolette, F., and Usunier, N. (2008).

A transductive bound for the voted classifier with an application to semi-supervised learning.
In Advances in Neural Information Processing Systems (NIPS 21), pages 65–72.

McAllester, D. A. (1999).

PAC-bayesian model averaging.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, COLT ’99, pages
164–170, New York, NY, USA. ACM.

Morvant, E., Koço, S., and Ralaivola, L. (2012).

PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification.
In International Conference on Machine Learning (ICML), pages 815–822, Edinburgh, UK.

Feofanov, Devijver, Amini Transductive Bounds for the Multi-class Majority Vote Classifier

github.com/vfeofanov/trans-bounds-maj-vote


15/15

Conclusion and Perspectives

Proposed transductive bounds for the Bayes classifier, which are tight
under certain conditions.

Self-learning with automatic threshold finding shows promising results for
semi-supervised tasks.

Future perspective: self-learning with semi-supervised feature selection.

The source code:
github.com/vfeofanov/trans-bounds-maj-vote

References
Amini, M., Laviolette, F., and Usunier, N. (2008).

A transductive bound for the voted classifier with an application to semi-supervised learning.
In Advances in Neural Information Processing Systems (NIPS 21), pages 65–72.

McAllester, D. A. (1999).

PAC-bayesian model averaging.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, COLT ’99, pages
164–170, New York, NY, USA. ACM.

Morvant, E., Koço, S., and Ralaivola, L. (2012).

PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification.
In International Conference on Machine Learning (ICML), pages 815–822, Edinburgh, UK.

Feofanov, Devijver, Amini Transductive Bounds for the Multi-class Majority Vote Classifier

github.com/vfeofanov/trans-bounds-maj-vote


15/15

Conclusion and Perspectives

Proposed transductive bounds for the Bayes classifier, which are tight
under certain conditions.

Self-learning with automatic threshold finding shows promising results for
semi-supervised tasks.

Future perspective: self-learning with semi-supervised feature selection.

The source code:
github.com/vfeofanov/trans-bounds-maj-vote

References
Amini, M., Laviolette, F., and Usunier, N. (2008).

A transductive bound for the voted classifier with an application to semi-supervised learning.
In Advances in Neural Information Processing Systems (NIPS 21), pages 65–72.

McAllester, D. A. (1999).

PAC-bayesian model averaging.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, COLT ’99, pages
164–170, New York, NY, USA. ACM.

Morvant, E., Koço, S., and Ralaivola, L. (2012).

PAC-Bayesian Generalization Bound on Confusion Matrix for Multi-Class Classification.
In International Conference on Machine Learning (ICML), pages 815–822, Edinburgh, UK.

Feofanov, Devijver, Amini Transductive Bounds for the Multi-class Majority Vote Classifier

github.com/vfeofanov/trans-bounds-maj-vote

	Introduction
	Framework
	Transductive Bounds
	Application

