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ABSTRACT

Self-training is a well-known approach for semi-supervised learning. It consists of iteratively assign-
ing pseudo-labels to unlabeled data for which the model is confident and treating them as labeled
examples. For neural networks, softmax prediction probabilities are often used as a confidence
measure, despite the fact that they are known to be overconfident, even for wrong predictions. This
phenomenon is particularly intensified in the presence of sample selection bias, i.e., when data la-
beling is subject to some constraint. To address this issue, we propose a novel confidence measure,
called T -similarity, built upon the prediction diversity of an ensemble of linear classifiers. We
provide the theoretical analysis of our approach by studying stationary points and describing the
relationship between the diversity of the individual members and their performance. We empirically
demonstrate the benefit of our confidence measure for three different pseudo-labeling policies on
classification datasets of various data modalities.

1 Introduction

Deep learning has been remarkably successful in the past decade when large amounts of labeled data became available
(He et al., 2016; Goodfellow et al., 2014; Dosovitskiy et al., 2021). However, in many real-world applications data
annotation is costly and time-consuming (Imran et al., 2020), while data acquisition is cheaper and may result in an
abundance of unlabeled examples (Fergus et al., 2009). In this context, semi-supervised learning (Chapelle et al.,
2006, denoted by SSL) has emerged as a powerful approach to exploit both labeled and unlabeled data (van Engelen
and Hoos, 2020). Among existing SSL techniques, self-training (Amini et al., 2023) received a lot of interest in recent
years (Lee, 2013; Sohn et al., 2020; Zhang et al., 2021; Chen et al., 2022). The main idea behind the self-training
approach is to use the predictions of a classifier learned on available labeled data to pseudo-label unlabeled data
and progressively include them in the labeled set during the training. Traditionally, at each iteration of self-training,
we select for pseudo-labeling the unlabeled examples that have a prediction confidence above a certain threshold.
The latter can be fixed (Yarowsky, 1995), dynamic along the training (Cascante-Bonilla et al., 2021), or optimized
(Feofanov et al., 2019). When it comes to analyzing the performance of self-training algorithms, two fundamental
questions primarily arise: (1) How to rank unlabeled data to reflect their difficulty for classification? (2) How to select
the threshold for pseudo-labeling at each iteration? While the second question is related to the choice of a pseudo-
labeling policy and is already well addressed in the literature (Feofanov et al., 2019; Cascante-Bonilla et al., 2021;
Zhang et al., 2021), the first question is related to confidence estimation and remains an open problem as the most
conventional choice for such a ranking – the softmax prediction probability – is known to suffer from overconfidence
(Wei et al., 2022).

In this work, we propose a reliable ranking measure for pseudo-labeling and place ourselves in a challenging, yet
realistic, scenario of SSL with a distribution shift. For the latter, we consider the sample selection bias (SSB) setup
(Heckman, 1974) where the annotation of training data is subject to certain constraints. Selection bias is known to
occur in survey design (Quionero-Candela et al., 2009), in medical research studies during the creation of cohorts and
control groups (Alves, 2006; Ahern, 2018; Arias et al., 2023), or in industry due to privacy or security reasons. We
denote this challenging scenario by SSL + SSB.
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Figure 1: Unlabeled data (circles) colored by the confidence value of being from the orange class (right point cloud),
from blue to orange as it increases. Left: Given a model trained on few labeled examples ( ), softmax may provide
wrong confidence estimates for unlabeled data. Right: Our method averages confidence estimates of a diverse set of
classifiers leading to a well-calibrated model robust to distribution shift.

Summary of contributions. We summarize our contributions as follows:

1. We propose a novel confidence measure, illustrated in Figure 1, that builds upon the diversity of an ensemble
of classifiers. Such a measure is easy to implement into any popular SSL method using neural networks as a
backbone;

2. We provide a thorough theoretical analysis of our method by studying stationary points and showing the
connection between diversity and the performance of the individual classifiers;

3. We experimentally demonstrate the superiority of our approach for self-training on various SSL datasets under
SSB. Additionally, we show that SSB degrades the performance of other popular methods when not dealt with
properly.

2 Related Work

Self-training. In SSL, a classical strategy to incorporate unlabeled data into the learning process is to use the pre-
dictions of a supervised model on it, either for regularization (Grandvalet and Bengio, 2004; Feofanov et al., 2023)
or for self-training by iteratively including most confident pseudo-labeled data to the labeled set. The latter approach
is widespread in computer vision, where self-training is often combined with consistency regularization to encour-
age similar predictions for different augmentations of the same unlabeled image (Sohn et al., 2020; Zhang et al.,
2021; Chen et al., 2022). Correctly choosing the confidence threshold for unlabeled data is key to the success of
self-training. Instead of using a fixed threshold, several works propose to select the threshold at each iteration via
curriculum learning to control the number of pseudo-labeled examples (Cascante-Bonilla et al., 2021; Zhang et al.,
2021), while Feofanov et al. (2019) finds the threshold as a balance between the upper-bounded transductive error on
the pseudo-labeled examples and their number. All of these methods strongly depend on the confidence measure of the
base classifier, and thus are not well suited when the base classifier is biased towards the labeled set, or when labeled
and unlabeled data follow different probability distributions. In this work, we aim to fill this gap and propose a model-
and application-agnostic confidence estimation approach that is robust to such distribution mismatch.

Sample selection bias. SSB describes the situation where the distribution mismatch between labeled and unlabeled
data is due to some unknown sample selection process, i.e., when data labeling is subject to some constraints. Formal-
ized by Heckman (1974), this framework received a lot of attention in the 1980s in the case of linear regression from
the econometrics community (Lee, 1982; Heckman, 1990). In the context of classification, SSB was properly defined
by Zadrozny (2004), and most of the methods address it via importance sampling by estimating biased densities or
selection probabilities (Zadrozny, 2004; Dudı́k et al., 2005; Shimodaira, 2000) or by using prior knowledge about the
class distributions (Lin et al., 2002). Alternatively, the resampling weights can be inferred by kernel mean matching
(Huang et al., 2006). All these methods heavily rely on density estimation and thus are not well suited in SSL where
labeled data is scarce. In our work, we propose to turn this curse of scarcity of labeled data into a blessing by exploiting
the diversity of a set of classifiers that can be fit to a handful of available labeled points.

Ensemble diversity. It is well known that an ensemble of learners (Hansen and Salamon, 1990) is efficient when its
members are “diverse” in a certain sense (Dietterich, 2000; Kuncheva, 2004; Lu et al., 2010). Over the last decades,
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generating diversity has been done in many ways, including bagging (Breiman, 2001), boosting (Freund and Schapire,
1997; Friedman, 2001), and random subspace training (Ho, 1998). These methods, however, are based on implicit
diversity criteria, calling for new approaches where the ensemble diversity can be defined explicitly. To this end, Liu
and Yao (1999) introduce a mixture of experts that are diversified through the negative correlation loss that forces
a trade-off between specialization and cooperation of the experts. Buschjäger et al. (2020) derive a bias-variance
decomposition that encompasses many existing diversity methods, particularly showing that the negative correlation
loss is linked to the prediction variance of the ensemble members. Ortega et al. (2022) derive an upper bound over the
generalization error of the majority vote classifier showing that the performance of the ensemble depends on the error
variance of the individual classifiers. Some recent works rely on ensemble diversity to estimate accuracy on a given
test set, namely, Jiang et al. (2022) use the disagreement rate of two independently trained neural networks, while
Chen et al. (2021) evaluate the disagreement between a deep ensemble and a given pre-trained model. The closest
method to our work is that of Zhang and Zhou (2013) which learns an ensemble classifier by imposing diversity in
predictions on unlabeled data. In this paper, we extend their binary setting to multi-class classification and push their
idea further by showing the benefits of using diversity for calibration and confidence estimation in self-training under
distribution shift. In addition, we provide a theoretical explanation of why the diversity imposed in such a way works
in practice.

3 Our Contributions

Notations. Scalar values are denoted by regular letters (e.g. parameter λ), vectors are represented in bold lowercase
letters (e.g. vector x) and matrices are represented by bold capital letters (e.g., matrix A). The i-th row of the
matrix A is denoted by Ai and its j-th column is denoted by A·,j . The trace of a matrix A is denoted Tr(A) and
its transpose by A⊤. The identity matrix of size n is denoted by In ∈ Rn×n. The unit vector of size n with each
entry equal to 1 is denoted by 1n. The unit matrix of size n with each entry equal to 1 is denoted by U[n] ∈ Rn×n.
We have U[n] = 1n1

⊤
n . We denote λmin(A) and λmax(A) the minimum and maximum eigenvalues of a matrix A,

respectively.

3.1 Problem setup

Semi-supervised learning. Consider the classification problem with input space X and label space Y={1, . . . , C}.
Let (Xℓ,yℓ) = (xi, yi)

nℓ
i=1 ∈ (X × Y)nℓ be the set of labeled training examples. Let Xu = (xi)

nℓ+nu

i=nℓ+1 ∈ Xnu be
the set of unlabeled training examples. The hypothesis space is denoted H = {h : X → ∆C}, where ∆C = {p ∈
[0, 1]C |

∑C
c=1 pc = 1} is the probability simplex. For an input x∈X , a learning model h∈H, h(x) is a probability

measure on Y , and the predicted label is defined as ŷ = argmaxh(x).

Sample selection bias. We model SSB for labeled data following Quionero-Candela et al. (2009, chap. 3) and
introduce a random binary selection variable s, where s = 1 means that the training point is labeled, while s = 0
implies that it remains unlabeled. Assuming the true stationary distribution of data P on X × Y , we consider that
labeled training examples are i.i.d. drawn from Plab, while unlabeled training and test examples are from Punlab and
Ptest respectively, with Plab, Punlab and Ptest defined as follows:

Plab(x, y) = P (x, y|s = 1) =
P (s = 1|x, y)
P (s = 1)

P (x, y),

Punlab(x, y) = Ptest(x, y) = P (x, y).

Self-training. Most commonly, a self-training algorithm is first initialized by the base classifier trained using only
labeled data (Xl,yℓ). Then, at each iteration i, the algorithm measures the prediction confidence for unlabeled points
from Xu, typically, through prediction probabilities like softmax. Based on these confidence estimates, a pseudo-
labeling policy determines the unlabeled examples that are pseudo-labeled by the corresponding model’s predictions.
These pseudo-labeled data are moved from Xu to (Xℓ,yℓ) and the classifier is re-trained. The same procedure
is repeated for several iterations until stop criteria are satisfied. Algorithm 1, given in Appendix A.1, outlines the
pseudo-code of this learning method.

3.2 Proposed approach

Similarity as a surrogate of confidence. Our main idea is to use the similarity between ensemble predictions on
a given unlabeled example to estimate the prediction’s confidence, instead of using the usual softmax prediction

3



Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias

SURMHFWLRQ
OD\HUV

VXSHUYLVHG
KHDG

KHDG�

KHDG�

%DFNZDUG�3URSDJDWLRQ

)RUZDUG�3URSDJDWLRQ /DEHOHG�'DWD

8QODEHOHG�'DWD

SURMHFWLRQ
OD\HUV

SUHGLFWLRQ
KHDG

KHDG�

KHDG�

%DFNZDUG�3URSDJDWLRQ

)RUZDUG�3URSDJDWLRQ /DEHOHG�'DWD

8QODEHOHG�'DWD

Figure 2: Architecture of the model.

probability. The underlying intuition is to say that if the individual, but diverse, classifiers agree on a point, then
the associated prediction can be trusted with high confidence. Conversely, if we find many ways to disagree on a
given point then it is likely a difficult point for our model, so a low confidence is attributed. Below, we formalize the
proposed confidence measure:

Definition 3.1 (T -similarity). Consider an unlabeled data point x ∈ Xu and an ensemble of classifiers T =
{hm ∈ H|1 ≤ m ≤M}. The T -similarity of x is defined by:

sT (x) =
1

M(M − 1)

∑
m ̸=k

hm(x)⊤hk(x).

We now present a simple property of the proposed confidence measure sT highlighting that it can be used as an
alternative to softmax prediction probabilities when the output of the individual classifiers lies in the probability
simplex ∆C . The proof is given in Appendix E.1.

Proposition 3.2 (Property of sT ). Let T be an ensemble of probabilistic classifiers. Then, for any input x ∈ X ,
we have:

0 ≤ sT (x) ≤ 1.

Learning with the T -similarity. Following Zhang and Zhou (2013), we train an ensemble to fit well the labeled set
while having the most diverse possible individual predictions on the unlabeled set. We achieve this by minimizing the
following loss function:

Lconf (T , (Xℓ,yℓ),Xu) =
1

M

M∑
m=1

ℓsup(hm,Xℓ,yℓ)︸ ︷︷ ︸
label fidelity term

− γ ℓdiv(T ,Xu)︸ ︷︷ ︸
diversity term

, (1)

where ℓsup is a supervised loss evaluated on the labeled examples, typically the cross-entropy loss ℓce, ℓdiv corresponds
to the diversity loss of the ensemble T , and γ ≥ 0 is a hyperparameter that controls the strength of the imposed
diversity. As maximizing the diversity amounts to minimizing the similarity, we consider

ℓdiv(T ,Xu) = −
1

nu

nℓ+nu∑
i=nℓ+1

sT (x). (2)

Practical implementation. To combine confidence estimation and prediction, we introduce the neural network de-
scribed in Figure 2. First, input data is projected on a high-dimensional feature space. The projection layers are
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learned together with a classification head that is also used for predicting pseudo-labels. This prediction head, denoted
by hpred, is updated via backpropagation of the supervised loss Lsup (hpred, (Xℓ,yℓ))= ℓsup(hpred, (Xℓ,yℓ)). Another
part of the network is responsible for confidence estimation. After projecting inputs to the hidden space, an ensemble
of M heads follows and is optimized using (1). The important thing is that backpropagation of (1) only influences the
ensemble heads, not the projection layers, since we want to estimate prediction confidence given a fixed representation.
Then, the total loss for the network is:

Lsup (hpred, (Xℓ,yℓ)) + Lconf (T , (Xℓ,yℓ),Xu).

In our experiments, we considerM=5 linear heads. It results in fast training and no significant computational burden.
The ease of implementation enables the combination of the proposed T -similarity with any SSL method that uses a
neural network as a backbone.

3.3 Theoretical analysis

We now provide the theoretical guarantees of the proposed learning framework. For the sake of clarity, we formulate
the problem in the binary classification case and consider only the confidence estimation part (the ensemble of heads)
for a fixed representation space. We show that, under a mild assumption, the solution of the optimization problem
(minimization of (1)) is unique. In addition, we establish a lower bound on the diversity of the optimal ensemble that
gives theoretical insights into the relationship between diversity and the performance of the individual classifiers from
the considered ensemble.

Problem formulation. Assuming Y = {−1,+1} and centered training data, we parameterize a linear head hm,
m∈J1,MK, by a separating hyperplane ωm∈Rd and hm(x)=ω⊤mx∈R so that Proposition 3.2 no longer holds. For a
given example x ∈ Rd, the classifier hm predicts the label by sign(hm(x)). We denote W ∈ Rd×M the matrix whose
columns are the separating hyperplanes ωm, i.e., ∀m ∈ J1,MK,W·,m = ωm ∈ Rd. In the rest of this section, we refer
to W as the ensemble of classifiers instead of using the notation T . For practical considerations from the theoretical
point of view, we consider ridge (also known as LS-SVM (Suykens and Vandewalle, 1999)) classifiers that minimize
the least-square loss with Tikhonov regularization. Then, following this setup, we can re-write (1), and formulate the
optimization problem as:

argmin
W∈Rd×M

L(W) :=
1

Mnℓ

M∑
m=1

nℓ∑
i=1

(
yi − ω⊤mxi

)2
︸ ︷︷ ︸

label fidelity term

+
1

M

M∑
m=1

λm∥ωm∥22︸ ︷︷ ︸
regularization

+
γ

nuM(M − 1)

∑
m̸=k

nℓ+nu∑
i=nℓ+1

ω⊤mxiω
⊤
k xi︸ ︷︷ ︸

unlabeled diversity term

,

(P)

where the last term is the diversity loss ℓdiv from (2) with linear classifiers. We note that in the binary framework, the
similarity measure does not lie in the [0, 1] interval, but can take any real value. However, with a reasonable choice of
γ, the binarized objective should lead to similar diverse ensembles. In the next paragraph, we show that, under a mild
assumption on the λm, the problem (P) can be solved efficiently.

Convergence to a stationary point. In practice, as L is differentiable, the learning problem is solved via gradient
descent, which aims at finding local minimizers of L. Such minimizers are stationary points, i.e., solutions of the Euler
equation

∇L(W) = 0. (3)
In our setting, (3) reduces to a linear problem in W. More details can be found in Appendix E.2. We now make the
following assumption on the parameters λm:

∀m ∈ J1,MK, λm >
γ(M + 1)

nu(M − 1)
λmax(X

⊤
uXu). (A)

Assumption A ensures that λmId − γ(M+1)
nu(M−1)X

⊤
uXu is positive definite, and thereby that λm > 0, for all m. The

next proposition establishes the convergence of (P) towards a unique solution. The detailed proof is given in Ap-
pendix E.3.
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Proposition 3.3 (Convergence of (P)). Under Assumption A, L is strictly convex and coercive on Rd×M . Hence,
the optimization problem (P) admits a unique solution W∗ that verifies (3).

Proposition 3.3 highlights the fact that, under assumption A, solving (P) amounts to solving (3). In the rest of this
section, we study a measure of diversity for the stationary points of L, i.e., solutions of (3).

Relationship between diversity and individual performance. We proceed with the analysis of the diversity loss
ℓdiv on the unlabeled set re-written as:

ℓdiv(W,Xu)=−
1

nuM(M − 1)

∑
m ̸=k

ω⊤mX⊤uXuωk. (4)

We now want to develop our intuition about when ℓdiv achieves its maximum value. We note that X⊤uXu is positive
semi-definite then ω⊤mX⊤uXu remains in the same half-space as ωm. The positive value of ℓdiv is then achieved
when the angle between ωm and ωk is between 90 and 180 degrees. The next theorem characterizes the diversity of
stationary points of L, i.e., solutions of (3). The detailed proof is given in Appendix E.4.

Theorem 3.4 (A lower bound on the diversity). Let W̃ be a stationary point of L, i.e., solution of (3). We denote
ω̃m its m-th column and assume that 1

M

∑M
m=1 λm∥ω̃m∥22 ≥ 1. Then, we have

γℓdiv(W̃,Xu) ≥
1

2nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 +
1

2M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m.

From Theorem 3.4, we obtain that the diversity loss of stationary points of L is non-negative, although, as discussed
above, ℓdiv(W,Xu) may be negative. This implies that the diversity term encourages opposite predictions between
classifiers, while the labeled loss term minimized explicitly by our approach likely prevents completely colinear solu-
tions that would degrade the supervised loss too much. We also note that the second term, which we do not optimize
explicitly, can be decomposed into a weighted sum of the norms of the individual classifiers 1

2M

∑M
m=1 λm||ω̃m||22

and a margin term 1
2Mnℓ

∑M
m=1

(
ω̃⊤mX⊤ℓ Xℓω̃m

)
. Assuming for simplicity that the ω̃m are orthogonal, it implies that

high diversity is achieved by finding predictors of the largest possible margin so that they also span the M directions
of the largest variance of the labeled data. This insight is quite important as we do not explicitly consider the spectral
properties of the labeled data in our approach. Yet, we implicitly exploit them by using a very simple and lightweight
approach.

The role of representation learning. So far, we assumed that the labeled data representation is fixed. In this case,
we showed that the diversity is high when the individual predictors cover the directions of large variance in the data.
Below, we show that the direction of the smallest variance in Xℓ is also important for diversity suggesting that labeled
data covering the input space evenly is beneficial to our approach. The proof is given in Appendix E.5.

Corollary 3.5 (Connection to contrastive learning). Let W̃ be a stationary point of L, i.e., solution of (3). We
denote ω̃m its m-th column. Assuming that the condition of Theorem 3.4 holds and that all λm are equal to some
λ, we have:

γℓdiv(W̃,Xu) ≥
1

2M

(
λ+

1

nℓ
λmin

(
X⊤ℓ Xℓ

))
∥W̃∥2F.

As λmin(X
⊤
ℓ Xℓ) represents the magnitude of the spread in the direction of less variance, we want to push

λmin(X
⊤
ℓ Xℓ) away from 0 to span the whole space as evenly as possible. When Xℓ is the output of an embedding

layer of a neural network, this idea is reminiscent of contrastive learning methods that learn an embedding space hav-
ing a uniform distribution on the sphere (Wang and Isola, 2020). We leave the idea of coupling diversity maximization
with contrastive learning suggested by Corollary 3.5 for future research.

4 Experiments

In this section, we first showcase the failure of self-training in the SSB setting when the softmax is used as a confidence
measure. Then, we empirically demonstrate the effectiveness of the T -similarity for confidence estimation and for self-
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training on common classification datasets with different data modalities. All the implementation details are given in
Appendix B.2.

Datasets. We consider 13 publicly available SSL datasets with various data modalities: biological data for Cod-RNA
(Chang and Lin, 2011), DNA (Chang and Lin, 2011), Protein (Dua and Graff, 2017), Splice (Dua and Graff, 2017);
images for COIL-20 (Nene et al., 1996), Digits (Pedregosa et al., 2011), Mnist (Lecun et al., 1998); tabular data for
DryBean (Dua and Graff, 2017), Mushrooms (Dua and Graff, 2017), Phishing (Chang and Lin, 2011), Rice (Dua
and Graff, 2017), Svmguide1 (Chang and Lin, 2011); time series for HAR (Dua and Graff, 2017). More details can be
found in Appendix B.1. All experimental results reported below are obtained over 9 different seeds.

Baselines. We conduct experiments with various pseudo-labeling policies: ERM, the supervised baseline that does not
pseudo-label and is trained using labeled data only; PLθ=0.8 with the fixed threshold θ=0.8 (Lee, 2013); CSTA∆=0.4

with the curriculum step ∆=0.4 (Cascante-Bonilla et al., 2021) and MSTA (Feofanov et al., 2019). More details about
the policies and their implementation can be found in Appendix A.2 and B.3 respectively. Each baseline is evaluated
with both the usual softmax prediction probability and our proposed T -similarity. For the sake of simplicity, we
denote softmax and T -similarity in the result tables to distinguish those methods.

Labeling procedure. To generate SSL data, we consider the two following labeling strategies and compare the
studied baselines in both cases (see more details in Appendix B.4):

1. IID: this is the case usually considered in classification tasks that verifies the i.i.d. assumption. The selection
variable s is completely random, i.e., independent of x and y. In this case, we have P (s = 1|x, y) = P (s = 1) and
thus Plab(x, y) = P (x, y).

2. SSB: in this case, s is dependent of x and y. For each class c and each data x with label y = c, we impose:

P (s = 1|x, y = c) =
1

β
exp(r × |proj1(x)|),

where r > 0 is a hyperparameter, proj1(x) is the projection value of x on the first principal component of the training
data in class c and β =

∑
x exp(r×|proj1(x)|) is a normalizing constant to ensure that P (s = 1|x ∈ Xℓ, y = c) = 1.

The impact of the strength of the bias is studied in Appendix C.5.
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Figure 3: Test accuracies of the different baselines on 5 datasets. Full results are in Appendix C.1.

4.1 Failure of self-training with the softmax

We start by empirically illustrating that the performance of self-training is heavily dependent on the initial performance
of the base classifier when the softmax prediction probabilities are used as a confidence measure. In Figure 3, we
compare the performance of the base classifier ERM and the self-training methods under the two considered labeling
procedures. One can see that all self-training methods together with their base classifier exhibit a drop in performance
(in some cases, up to 30%) indicating that softmax predictions are not robust to the distribution shift. Of particular in-
terest here is Mushrooms data set, where unlabeled data degrades the performance even further by 6.5% for CSTA∆=0.4

and by 15.4% for PLθ=0.8 when we compare them to ERM. We also show a similar failure on model selection task in
Appendix C.2. In what follows, we show that our proposal tackles these drawbacks inherent to other baselines.
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Figure 4: Increasing the diversity leads to a better-calibrated classifier in both IID and SSB settings.
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Figure 5: Softmax classifier is overconfident for both correctly and wrongly predicted samples. sT assigns lower
confidence to samples that are likely to be misclassified both in IID and SSB settings.

4.2 Ensemble diversity provides a calibrated confidence measure

In this section, we train the model on the labeled set and then compute T -similarity on the unlabeled data to verify its
advertised behavior both in confidence estimation and in calibration of the final model.

Correcting the overconfidence of the softmax. We plot the distributions of the confidence values for both softmax
and T -similarity for both accurate (Correct Prediction) and incorrect predictions (Wrong Prediction). We display the
plots obtained on Mnist in Figure 5 (results for other datasets given in Appendix C.3). Our conclusion here is two-
fold: (1) softmax is overconfident both in IID and SSB settings (high confidence leads to the highest error rate),
while T -similarity confidence is low when the model makes most of its mistakes and is confident when it reduces
them to 0; (2) SSB setting degrades the confidence estimation with softmax degrades even further while T -similarity
remains robust to such a distribution shift. This vividly highlights that T -similarity possesses the desired properties
and behaves as expected.

Higher diversity improves calibration. In Figure 4, we compare the Expected Calibration Error (Naeini et al.,
2015) obtained on the unlabeled set with the softmax and T -similarity as a function of a varying regularization
strength γ. We can see that when no diversity is imposed, i.e., γ=0, the ECE obtained with both confidence measures
is comparable. However, for any positive value of γ, the calibration error becomes smaller and smaller in most of the
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Table 1: Classification performance of the different baselines on the datasets described in Table 2 when labeling is
done with SSB. We display the average and the standard deviation of the test accuracy (both in %). The softmax
corresponds to the usual self-training which uses the softmax prediction probability as a confidence estimate while
the T -similarity corresponds to our proposed method in Algorithm 1. For each baseline, the best result between
softmax and T -similarity is in bold.

Dataset ERM
PLθ=0.8 CSTA∆=0.4 MSTA

softmax T -similarity softmax T -similarity softmax T -similarity

Cod-RNA 74.51± 8.86 74.75± 8.14 80.06± 3.55 73.39± 7.36 78.39± 4.66 75.28± 8.79 76.88± 7.67
COIL-20 84.54± 2.19 84.69± 3.56 84.57± 2.85 84.38± 3.05 84.57± 3.16 84.32± 2.34 84.07± 2.85
Digits 75.68± 4.59 80.47± 3.8 78.2± 3.34 78.4± 3.28 79.14± 3.5 78.02± 5.15 79.8± 5.92
DNA 78.82± 2.31 80.29± 2.24 79.06± 2.31 80.12± 2.08 80.76± 2.24 80.89± 2.64 84.09± 1.7
DryBean 64.6± 3.89 65.6± 4.18 61.55± 4.91 64.91± 3.72 64.6± 3.53 66.24± 4.31 67.0± 3.96
HAR 82.57± 1.96 82.87± 3.02 83.12± 2.27 82.19± 2.61 83.53± 3.77 81.35± 2.54 81.16± 1.63
Mnist 50.74± 2.25 51.08± 2.55 52.69± 2.42 51.7± 3.52 54.26± 1.82 51.6± 2.58 54.18± 2.34
Mushrooms 69.45± 7.29 59.53± 10.46 71.36± 6.63 62.98± 7.25 77.55± 7.65 72.16± 7.59 76.16± 13.04
Phishing 67.42± 3.55 66.08± 5.66 77.41± 3.93 66.88± 5.64 76.17± 8.58 69.48± 4.37 75.83± 7.52
Protein 57.57± 6.33 57.45± 6.36 57.61± 6.23 56.09± 5.61 57.74± 7.8 58.81± 6.54 59.88± 6.29
Rice 79.19± 5.12 80.54± 4.31 81.1± 4.28 79.88± 4.48 81.56± 3.61 80.35± 4.89 82.63± 5.63
Splice 66.13± 4.47 67.14± 2.62 67.45± 2.53 67.28± 2.07 68.05± 2.17 66.08± 4.98 66.32± 4.73
Svmguide1 70.89± 10.98 70.35± 11.74 81.07± 5.39 69.84± 11.06 74.46± 7.23 71.04± 11.11 73.13± 8.82

cases considered. This is equally true for both IID and SSB settings and backs up our claim about the robustness of
T -similarity to the distribution shift.

We now move to the evaluation of T -similarity when used in self-training within the SSL+SSB paradigm.

4.3 Robust self-training with the T -similarity

Improved performance under SSB. We now compare the softmax prediction probability and our T -similarity
under SSB. For each dataset, we display the average and the standard deviation of the test accuracy (both in %) in
Table 1. For CSTA∆=0.4 and MSTA, the T -similarity leads to a substantial improvement on 11 of the 13 datasets. For
PLθ=0.8, it improves the baseline on 8 of the 13 datasets. The obtained improvement is significant on Mushrooms
and Phishing, where the softmax performs worse than ERM, the supervised baseline. For a fair evaluation of our
method, we perform the same experiment as above when the labeling is done with IID in Appendix C.4. The obtained
performance of our method is close to that of softmax suggesting that diversity can be safely promoted without any
assumptions on the statistical relationship between the labeled and unlabeled data.
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Figure 6: Ablation study on the confidence threshold on Mushrooms and Phishing and Svmguide1. We display the
average test accuracy (%) with a 95% confidence interval.

Sensitivity analysis. In Table 1 and Table 4, we display the results of the pseudo-labeling policy PLθ with θ = 0.8.
To show that our obtained improvements are robust to the choice of confidence threshold θ, we study the performance
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of self-training with the softmax and the T -similarity on Mushrooms, Phishing and Svmguide1, under both the
IID and SSB settings, when θ varies in {0.7, 0.8, 0.9, 0.95}. We present the results in Figure 6 and observe that
for IID setting, the choice of the confidence level is not very important for both baselines considered. However, in
SSB setting, it appears safer to choose a lower confidence level for pseudo-labeling as in most cases it leads to the
best performance. Finally, and in accordance with Table 1, we note that our approach behaves much better under
distribution shift compared to softmax.

Additional results. Due to the space constraints, we provide a study on the impact of the number of labeled examples
per class nℓ in Appendix D.1. We also highlight the sensitivity of our method as a function of γ with respect to other
pseudo-labeling strategies, and the number of classifiers M in Appendix D.2.

5 Conclusion

In this paper, we studied the effect of the sample selection bias on the performance of self-training methods with the
semi-supervised learning framework. We showed that the conventional choice of softmax as a confidence measure
degrades their performance regardless of the choice of the pseudo-labeling policy. To overcome this problem, we
proposed a new T -similarity measure that assigns high confidence to those unlabeled examples for which an ensemble
of diverse linear classifiers T agrees in its predictions. Firstly, we empirically showed that the proposed confidence
measure improves all the considered self-training methods in the case of biased labeling procedure. Secondly, we
performed a theoretical analysis of the proposed similarity and found that the representation space plays an important
role in the utility of the ensemble diversity. This suggests another direction of future work, where the representation
could be jointly learned with the diverse ensemble as a part of a batch self-training architecture (Chen et al., 2022).
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Buschjäger, S., Pfahler, L., and Morik, K. (2020). Generalized negative correlation learning for deep ensembling.

Cascante-Bonilla, P., Tan, F., Qi, Y., and Ordonez, V. (2021). Curriculum labeling: Revisiting pseudo-labeling for
semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 6912–
6920.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM transactions on intelligent
systems and technology (TIST), 2(3):1–27.

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning. The MIT Press.

Chen, B., Jiang, J., Wang, X., Wan, P., Wang, J., and Long, M. (2022). Debiased Self-Training for Semi-Supervised
Learning. In Advances in Neural Information Processing Systems.

Chen, J., Liu, F., Avci, B., Wu, X., Liang, Y., and Jha, S. (2021). Detecting Errors and Estimating Accuracy on
Unlabeled Data with Self-training Ensembles. Advances in Neural Information Processing Systems, 34.

de Mathelin, A., Deheeger, F., Richard, G., Mougeot, M., and Vayatis, N. (2021). Adapt: Correcting sample bias with
transfer learning. https://adapt-python.github.io/adapt/examples/Sample_bias_example.html.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Proceedings of the International Workshop on
Multiple Classifier Systems, MCS 2000, pages 1–15, Berlin, Heidelberg. Springer Berlin Heidelberg.

10

https://adapt-python.github.io/adapt/examples/Sample_bias_example.html


Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. In International Conference on Learning Representations.

Dua, D. and Graff, C. (2017). UCI Machine Learning Repository.

Dudı́k, M., Phillips, S., and Schapire, R. E. (2005). Correcting sample selection bias in maximum entropy density
estimation. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems,
volume 18. MIT Press.

Feofanov, V., Devijver, E., and Amini, M.-R. (2019). Transductive Bounds for the Multi-Class Majority Vote Clas-
sifier. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative
Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press.

Feofanov, V., Devijver, E., and Amini, M.-R. (2021). Multi-class probabilistic bounds for self-learning. arXiv preprint
arXiv:2109.14422.

Feofanov, V., Tiomoko, M., and Virmaux, A. (2023). Random matrix analysis to balance between supervised and un-
supervised learning under the low density separation assumption. In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J., editors, Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 10008–10033. PMLR.

Fergus, R., Weiss, Y., and Torralba, A. (2009). Semi-supervised learning in gigantic image collections. In Bengio,
Y., Schuurmans, D., Lafferty, J., Williams, C., and Culotta, A., editors, Advances in Neural Information Processing
Systems, volume 22. Curran Associates, Inc.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of computer and system sciences, 55(1):119–139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, pages
1189–1232.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
(2014). Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680.

Grandvalet, Y. and Bengio, Y. (2004). Semi-supervised Learning by Entropy Minimization. In Saul, L., Weiss, Y., and
Bottou, L., editors, Advances in Neural Information Processing Systems, volume 17. MIT Press.

Hansen, L. and Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(10):993–1001.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16, pages 770–778. IEEE.

Heckman, J. (1974). Shadow Prices, Market Wages, and Labor Supply. Econometrica, 42(4):679–694.

Heckman, J. (1990). Varieties of selection bias. The American Economic Review, 80(2):313–318.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern
analysis and machine intelligence, 20(8):832–844.

Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., and Smola, A. (2006). Correcting Sample Selection Bias by
Unlabeled Data. In Schölkopf, B., Platt, J., and Hoffman, T., editors, Advances in Neural Information Processing
Systems, volume 19. MIT Press.

Imran, A.-A.-Z., Huang, C., Tang, H., Fan, W., Xiao, Y., Hao, D., Qian, Z., and Terzopoulos, D. (2020). Partly
supervised multi-task learning. In 2020 19th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 769–774.

Jiang, Y., Nagarajan, V., Baek, C., and Kolter, J. Z. (2022). Assessing Generalization of SGD via Disagreement. In
International Conference on Learning Representations.

Kingma, D. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In International Conference on Learning
Representations (ICLR), San Diega, CA, USA.

Kuncheva, L. I. (2004). Combining Pattern Classifiers: Methods and Algorithms. Wiley.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

Lee, D.-H. (2013). Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural
Networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL).

11



Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias

Lee, L.-F. (1982). Some approaches to the correction of selectivity bias. The Review of Economic Studies, 49(3):355–
372.

Lin, Y., Lee, Y., and Wahba, G. (2002). Support Vector Machines for Classification in Nonstandard Situations. Ma-
chine Learning, 46(1):191–202.

Liu, Y. and Yao, X. (1999). Ensemble learning via negative correlation. Neural Networks, 12(10):1399–1404.
Lu, Z., Wu, X., Zhu, X., and Bongard, J. (2010). Ensemble Pruning via Individual Contribution Ordering. In Proceed-

ings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10,
page 871–880, New York, NY, USA. Association for Computing Machinery.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. (2015). Obtaining well calibrated probabilities using bayesian
binning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, page 2901–2907.

Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia object image library (coil-20). Technical Report CUCS-
005-96, Department of Computer Science, Columbia University.
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A Related work

A.1 Wrapper self-training

In Algorithm 1, we present a general pseudo-code for wrapper self-training algorithms that are based on different
confidence estimators ϕh and pseudo-labeling policies ψ. For neural networks, the conventional choice of ϕh is the
softmax function, so P̂u ∈ (∆C)

nj .

Algorithm 1: Wrapper Self-Training
Input: Labeled training set (Xl,yℓ), unlabeled training set Xu,

Base classifier h
Parameters: Pseudo-labeling policy ψ,

Confidence estimator ϕh based on h
Maximum number of iterations N

Initialization: Iteration t = 1
while t ≤ N and Xu ̸= ∅ do

1. Training
(Re-)Train the base classifier h on (Xℓ,yℓ)

2. Confidence estimation
P̂u = {ϕh(x)}x∈Xu

3. Pseudo-labeling
Determine subset Xpl ⊂ Xu for pseudo-labeling Xpl = ψ(Xu, P̂u, t)
Compute pseudo-labels ŷpl = {argmaxh(x)}x∈Xpl

4. Update of training sets
(Xℓ,yℓ)← (Xℓ,yℓ) ∪ (Xpl, ŷpl)
Xu ← Xu \Xpl

t← t+ 1
end
Output Final classifier h

A.2 Self-training policies

Fixed Threshold PLθ. It is the most standard policy (Yarowsky, 1995; Lee, 2013; Sohn et al., 2020) that fixes the
threshold to a certain value θ. In the case of ϕh ≡ softmax, we have [P̂u]j ∈ ∆C , and then the pseudo-labeling
policy outputs:

ψ(Xu, P̂u, t) = {xj |max
c

[P̂u]j,c > θ}nu
j=1. (5)

Curriculum CSTA∆. We follow the implementation of Cascante-Bonilla et al. (2021) that finds a new threshold θ(t)

at every iteration t as the (1 − t · ∆)-th quantile of the distribution of the prediction confidence {maxc[P̂u]j,c}nu
j=1,

that is assumed to follow a Pareto distribution. Then, the final policy is Eq. (5), where θ is replaced by θ(t).

Transductive policy MSTA This policy is based on the upper-bound of the transductive error on the unlabeled ex-
amples that have a confidence score larger than a threshold θ, denoted by Ru,≥θ (Amini et al., 2008). We use the

multi-class implementation of Feofanov et al. (2019) that employs a threshold vector θ(t) =
(
θ
(t)
c

)C
c=1

, where θ(t)c is
a threshold for class c at iteration t:

ψ(Xu, P̂u, t) =
{
xj |[P̂u]j,ŷj

> θ
(t)
ŷj

}nu

j=1
,

where ŷj = argmaxc[P̂u]j,c is the prediction for xj . The threshold is found by solving the following minimization
problem:

θ(t) = argmin
θ∈[0,1]C

Ru,≥θ

(1/nu)
∑nu

j=1 I([P̂u]j,ŷj
> θŷj

)
,

where I denotes the indicator function. Thus, the threshold at each iteration is chosen by minimizing the ratio between
the upper bound on the error and the number of examples to be pseudo-labeled.
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B Experimental Setup

B.1 Datasets

In all experiments, the only pre-processing step is to standardize the features. Table 2 sums up the characteristics of the
datasets used in our experiments and the corresponding values of hyperparameter r used in the SSB labeling procedure
(Algorithm 2). We considered 13 publicly available SSL datasets with various data modalities:

- Biological data for Cod-RNA (Chang and Lin, 2011), DNA (Chang and Lin, 2011), Protein (Dua and Graff,
2017), Splice (Dua and Graff, 2017)

- Images for COIL-20 (Nene et al., 1996), Digits (Pedregosa et al., 2011), Mnist (Lecun et al., 1998)

- Tabular data for DryBean (Dua and Graff, 2017), Mushrooms (Dua and Graff, 2017), Phishing (Chang and
Lin, 2011), Rice (Dua and Graff, 2017), Svmguide1 (Chang and Lin, 2011)

- Time series for HAR (Dua and Graff, 2017)

Table 2: Characteristics of the datasets and corresponding values of hyperparameter r.

Dataset Size # of lab. examples nℓ Dimension d # classes C SSB hyperparameter r
Cod-RNA 59535 99 8 2 2
COIL-20 1440 200 1024 20 0.33
Digits 1797 99 64 10 0.5
DNA 3186 149 180 6 25
DryBean 13543 104 16 7 2
HAR 10299 299 561 3 0.33
Mnist 70000 100 784 10 0.33
Mushrooms 8124 79 112 2 2
Phishing 11055 99 68 2 2
Protein 1080 80 77 8 0.6
Rice 3810 29 7 2 2
Splice 3175 39 20 2 2
Svgmguide1 3089 39 4 2 2

B.2 Architecture and training parameters

For all of our experiments, we train a 3-layer MLP, with the Adam optimizer (Kingma and Ba, 2015) and a learning
rate of 0.001. Training is performed during 5 epochs with 100 training iterations per epoch. We evaluate the model on
a test set of size 25% of the dataset. For each dataset, we perform the experiment with 9 different seeds and display
the average and the standard deviation of the test accuracy (both in %) over the 9 trials.

B.3 Baselines

We performed experiments with three different pseudo-labeling policies: PL, CSTA, and MSTA. For a fair comparison of
the methods, we tested manually different values of hyperparameters and kept those that gave good results on average,
namely, θ = 0.8 for PL and ∆ = 0.4 for CSTA. The maximum number of self-training iterations N is set to 5.

Implementation of MSTA In the original implementation of (Feofanov et al., 2019), the authors estimate the posterior
probability P (y|x) by the votes of the majority vote classifier. To apply the policy MSTA in Algorithm 1, the posterior
probabilities in the upper-bound expression has to be estimated, and they have empirically shown that the prediction
probabilities given by the supervised baseline allows to have a good proxy for the bound (Feofanov et al., 2021).
We have tested several ways to estimate these probabilities for our network (majority vote of the ensemble, using
T -similarities), and the use of predicted probabilities by the prediction head gives the most stable results.

B.4 More details on the labeling procedure

Labeling procedure. A classical strategy in SSL benchmarks is to use an i.i.d. sampling to select the same number
of labeled data in each class. It can be achieved by applying i.i.d. sampling in a class-wise manner. In our work, we
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refer to this labeling procedure as IID. Inspired by Huang et al. (2006); Zadrozny (2004), we consider another strategy
that simulates sample selection bias to select training examples in each class. We make sure that the original class
proportion is preserved. In our work, we refer to this labeling procedure as SSB. The pseudo-code of the SSB labeling
procedure is outlined in Algorithm 2 (values of r are given in the last column of Table 2).

Visualization. As a picture is worth a thousand words, we illustrate the sample selection bias on the Mushrooms
dataset (Dua and Graff, 2017). We select 80 labeled examples out of the 6093 training examples with the IID and
the SSB procedures. Inspired by (de Mathelin et al., 2021), we plot in the first row of Figure 7 the distribution of the
projection values on the first principal component (PC1) of the labeled training set (blue) and of the whole training set
(orange). Contrary to the IID sampling, we can see that the SSB sampling injects a clear bias between distributions.
We also visualize in the second row of Figure 7 the projection values on the first two principal components (PC1
and PC2) of the labeled training examples (blue) and of all the training samples (orange). We can see that the IID
procedure samples in all regions of the space while the SSB concentrates in specific areas.

Algorithm 2: SSB Labeling Procedure
Input: Training examples {(x1, y1), . . . , (xn, ym)}, class proportions
{p1, . . . , pC}

Parameters: number of training examples to label nℓ, hyperparameter
r > 0.

Initialize labeled training set (Xℓ,yℓ) = ∅
for c ∈ [C] do
Tc = {(xi, yi)|yi = c} set of training examples of class c
Compute projection values
Apply PCA on features of Tc
Recover for each xi the projection value on the first principal

component proj1(xi)
Compute β =

∑
xi

exp(r × |proj1(xi)|)
Draw without replacement in Tk
while |Xℓ| < pknℓ do

Draw xi with probability
P (s = 1|xi, yi = c) = 1

β exp(r × |proj1(xi)|)
Xℓ ← Xℓ ∪ {(xi, yi)}

end
end
Create the unlabeled training set
Xu = {xj |xj /∈ Xℓ}
Output labeled training set (Xℓ,yℓ), unlabeled training set Xu

Figure 7: Visualization of sample selection bias on
Mushrooms. First row: Distribution of the projection val-
ues on the first principal component (PC1). Second row:
Visualization of the projection values on the PC1 and the
PC2.

C Additional Experiments

In this section, we provide additional experiments and sensitivity analysis.

C.1 Failure cases of self-training

The classification performance of the self-training algorithms is shown in Table 3. For each method, on all datasets,
we observe a huge drop in performance when sample selection bias is applied (labeling with SSB) compared to when
it is not (labeling with IID). Self-training even turns out to be harmful in some situations, for instance on Mushrooms,
Phishing, or Protein. These results confirm the fact that a biased confidence measure, due to the sample selection
bias, diminishes the quality of the pseudo-labeling and in some cases, the benefit of using unlabeled data becomes
a disadvantage. It should be noted that the performance of the supervised baselines ERM also declines when sample
selection bias is applied.

C.2 Unreliable model selection

To further motivate the importance of this framework, we consider a model selection task. A traditional way to find
a good set of hyperparameters is to do cross-validation, that is to evaluate the model on a separate validation set. In
semi-supervised learning, as labeled data are scarce, one can do leave-one-out instead: each labeled example is used
as a test set while training is performed on the remaining samples. We will refer to the corresponding average test
accuracy as the leave-one-out accuracy. In the context of model selection, the chosen set of hyperparameters would
be the one giving the best leave-one-out accuracy. We propose to compare the leave-one-out accuracy when sample
selection bias is applied (labeling with SSB) and when it is not (labeling with IID). We perform this experiment on
Mushrooms, Protein and Mnist using the same architectures and training parameters as before. On each dataset, we
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Table 3: Classification performance of the different baselines on the datasets described in Table 2. We display the
average and the standard deviation of the test accuracy (both in %) over the 9 trials. For each baseline, the best result
between IID and SSB is in bold.

Dataset Bias Baselines

ERM PLθ=0.8 CSTA∆=0.4 MSTA

Cod-RNA
IID 89.28± 2.13 89.91± 2.03 89.09± 2.37 89.89± 1.89
SSB 74.51± 8.86 74.21± 7.76 73.39± 7.36 75.28± 8.79

COIL-20
IID 93.18± 1.5 94.32± 1.13 93.09± 1.73 93.21± 1.57
SSB 84.54± 2.19 84.6± 3.86 84.38± 3.05 84.32± 2.34

Digits
IID 81.38± 2.45 84.27± 2.98 81.78± 2.51 83.04± 2.13
SSB 75.68± 4.59 80.86± 4.11 78.4± 3.28 78.02± 5.15

DNA
IID 81.28± 2.27 83.45± 2.01 81.54± 2.44 83.19± 1.96
SSB 78.82± 2.31 82.28± 2.5 80.12± 2.08 80.89± 2.64

DryBean
IID 86.85± 1.68 88.02± 1.49 86.98± 1.61 87.72± 1.54
SSB 64.6± 3.89 66.12± 4.35 64.91± 3.72 66.24± 4.31

HAR
IID 91.16± 0.54 91.82± 0.4 91.36± 0.24 89.29± 1.24
SSB 82.57± 1.96 84.02± 2.61 82.19± 2.61 81.35± 2.54

Mnist
IID 73.98± 1.46 75.37± 1.57 75.24± 1.48 74.6± 1.76
SSB 50.74± 2.25 51.07± 2.2 51.7± 3.52 51.6± 2.58

Mushrooms
IID 96.48± 1.57 96.94± 1.4 96.3± 1.32 96.68± 1.31
SSB 69.45± 7.29 54.08± 5.56 62.98± 7.25 72.16± 7.59

Phishing
IID 88.51± 1.51 89.41± 1.44 88.96± 1.37 88.82± 1.7
SSB 67.42± 3.55 65.34± 7.86 66.88± 5.64 69.48± 4.37

Protein
IID 73.74± 4.78 75.51± 2.83 74.73± 3.01 73.99± 5.6
SSB 57.57± 6.33 56.87± 5.79 56.09± 5.61 58.81± 6.54

Rice
IID 88.24± 3.63 88.5± 3.39 88.15± 3.46 88.69± 3.49
SSB 79.19± 5.12 80.87± 4.43 79.88± 4.48 80.35± 4.89

Splice
IID 69.09± 4.09 70.64± 4.52 70.46± 4.32 69.65± 4.27
SSB 66.13± 4.47 67.02± 2.11 67.28± 2.07 66.08± 4.98

Svmguide1
IID 93.01± 1.63 93.22± 1.66 92.77± 1.77 93.4± 1.21
SSB 70.89± 10.98 70.22± 11.64 69.84± 11.06 71.04± 11.11

repeat the experiment with 9 different seeds and display the distribution of the leave-one-out accuracy over the 9 trials
in Figure 8. We can see that on all datasets, the leave-one-out accuracy under SSB is always better than with IID. The
analysis of these results is two-fold: (1) it empirically demonstrates the fact that the failure of self-training methods
is due to a biased confidence measure and not to a potentially uninformative labeled set. (2) it highlights the risk of
performing cross-validation in semi-supervised learning: the chosen set of hyperparameters corresponds to the highest
leave-one-out accuracy, but under sample selection bias, the real generalization performance of the model is low as
shown in Table 3.
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Figure 8: Leave-one-out on the labeled set of Mnist, Mushrooms and Protein. We display the distribution of the
leave-one-out accuracy (%) over the 9 trials.
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C.3 Correcting the softmax overconfidence

As in the main paper, for this experiment, we artificially use the true labels on Xu to compute the distribution of sT
on the examples for which the prediction of the model is accurate (Correct Prediction) and on the examples for which
the prediction is incorrect (Wrong Prediction). We compute the softmax prediction probabilities and the T -similarity
values on the unlabeled examples. Again, we artificially use the true labels to plot the distribution of the confidence
value (softmax or T -similarity) on the examples for which the prediction is accurate (Correct Prediction) and on the
examples for which the prediction is incorrect (Wrong Prediction). We display the plots obtained in Figure 9 for
various datasets. We can see that the obtained results are very similar to those presented in the main paper and our
conclusions about them hold.

C.4 The T -similarity is comparable to the softmax when there is no sample selection bias

We perform the same experiment as in Table 1 but when the labeling is done with IID. The obtained results are in
Table 4. It should be noted that in this setting, even if the softmax is subject to overconfidence, the pseudo-labeling
can still be of good quality as the distributions of labeled and unlabeled samples do not differ. We can observe
that the T -similarity induces a slight decrease in performance on most datasets. However, it manages to remain
competitive, notably for CSTA∆=0.4 and MSTA, where it even manages to be better or similar on 4 datasets out of 13.

Table 4: Classification performance of the different baselines on the datasets described in Table 2 when labeling is
done with IID. We display the average and the standard deviation of the test accuracy (both in %) over the 9 trials.
The softmax corresponds to the usual self-training which uses the softmax prediction probability as a confidence
estimate while the T -similarity corresponds to our proposed method in Algorithm 1. For each baseline, the best result
between softmax and T -similarity is in bold.

Dataset ERM
PLθ=0.8 CSTA∆=0.4 MSTA

softmax T -similarity softmax T -similarity softmax T -similarity

Cod-RNA 89.28± 2.13 89.34± 2.44 84.87± 3.54 89.09± 2.37 87.85± 2.24 89.89± 1.89 89.65± 2.19
COIL-20 93.18± 1.5 93.77± 1.19 93.49± 1.97 93.09± 1.73 93.3± 1.77 93.21± 1.57 94.17± 1.99
Digits 81.38± 2.45 83.58± 3.26 81.36± 2.75 81.78± 2.51 81.88± 3.02 83.04± 2.13 82.62± 3.03
DNA 81.28± 2.27 81.25± 2.5 79.49± 2.53 81.54± 2.44 81.64± 2.3 83.19± 1.96 84.72± 2.3
DryBean 86.85± 1.68 87.59± 1.6 86.6± 1.85 86.98± 1.61 86.74± 1.75 87.72± 1.54 87.35± 2.19
HAR 91.16± 0.54 91.24± 1.03 91.24± 0.38 91.36± 0.24 91.29± 0.39 89.29± 1.24 89.25± 1.26
Mnist 73.98± 1.46 74.61± 1.85 72.16± 3.1 75.24± 1.48 73.42± 1.6 74.6± 1.76 73.36± 1.33
Mushrooms 96.48± 1.57 96.56± 1.26 96.23± 1.57 96.3± 1.32 96.25± 1.38 96.68± 1.31 96.44± 1.33
Phishing 88.51± 1.51 89.02± 1.37 88.15± 1.4 88.96± 1.37 88.82± 1.06 88.82± 1.7 88.94± 1.85
Protein 73.74± 4.78 74.86± 3.48 75.43± 2.65 74.73± 3.01 75.68± 2.93 73.99± 5.6 75.1± 4.98
Rice 88.24± 3.63 88.34± 3.18 88.32± 3.29 88.15± 3.46 88.7± 2.92 88.69± 3.49 89.75± 2.1
Splice 69.09± 4.09 70.26± 4.08 69.65± 3.94 70.46± 4.32 70.32± 4.09 69.65± 4.27 70.51± 4.26
Svmguide1 93.01± 1.63 92.94± 1.91 91.92± 2.26 92.77± 1.77 92.31± 2.04 93.4± 1.21 92.83± 1.48
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Figure 10: The T -similarity is
more robust to distribution shift than
softmax.

C.5 Robustness to the strength of the bias

In this experiment, we study the robustness of our method to the strength of
the bias. More specifically, we make the labeling procedure gradually evolve
from IID to SSB. We consider for each class c and for each data x with label
y = c

Pα(s = 1|x, y = c) = (1− α) · 1

card(Tc)︸ ︷︷ ︸
IID

+ α · 1
β
exp(r × |proj1(x)|)︸ ︷︷ ︸

SSB

,

where α ∈ [0, 1] is the interpolation coefficient and Tc = {(x, y)|y = c} is
the set of training data of class c. Increasing α corresponds to imposing more
sample selection bias in the labeling procedure. In Figure 10, we display the
test accuracy on Mushrooms when the labeling procedure is done with Pα, where α varies in [0, 1]. We note that, up to
some point, increasing α does not lead to a strong distribution mismatch, and both the softmax prediction probabilities
and the proposed T -similarity give similar results. However, when the value of α exceeds 0.8, test accuracy suffers
from a sharp drop for both methods, with a more drastic decrease in the case of softmax. We empirically demonstrate
that our proposed T -similarity is more robust to distribution shift than the softmax.
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Figure 9: We display the distribution over the softmax and the T -similarity on the unlabeled examples correctly
classified by the base classifier and on the unlabeled examples mis-classified by the base classifier.
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D Ablation study and sensitivity analysis

D.1 Ablation study with different number of labeled examples

Intuitively, when the number of labeled examples increases, the impact of the SSB labeling procedure should decrease
as the base classifier has more labeled data to learn from and hence relies less on the unlabeled data. To study the
robustness of our method when the impact of sample selection bias decreases, we observe the performance of each
pseudo-labeling policy with the softmax and the T -similarity when the number of labeled data per class nℓ increases
from 20 to 2000. We display the results in Figure 11. We observe that in IID setting, the two methods behave similarly
and the performance gradually increases with the number of available labeled points. However, in SSB setting, we see
that T -similarity leads to much better results for realistic scenarios commonly considered in SSL when the number of
samples is small. This improvement is consistent across all pseudo-labeling policies considered.
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Figure 11: Ablation study on the number of labeled examples per class nℓ on Mushrooms for the three pseudo-labeling
policies.

D.2 Sensitivity to hyperparameters

We conduct a sensitivity analysis on Mushrooms to see how self-training with the proposed T -similarity behaves
under different choices of hyperparameters. For each pseudo-labeling policy, we make the diversity strength γ vary
in {0, 0.5, 1, 1.5, 2} and display the results in Figure 12. We observe that in SSB setting all pseudo-labeling policies
benefit from the diversity almost for all positive values of γ. Similarly, we see that in IID, the diversity does not hurt
the performance. In the same fashion, we make the number of classifiers M vary in {2, 5, 10} and display the results
Figure 13. The behavior is similar to the previous experiment and is consistent with our observations made so far.
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Figure 12: Sensitivity analysis of the diversity strength parameter γ on Mushrooms for the three pseudo-labeling
policies.
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(b) CSTA∆=0.4
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Figure 13: Sensitivity analysis of the number of classifiers M on Mushrooms for the three pseudo-labeling policy. We
display the average and standard deviation of the test accuracy over 9 seeds.
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E Proofs

In this section, we detail the proofs of our theoretical results. We use the notations introduced in Section 3 and, for
ease of notation, we define the following quantities:

Su =
γ(M + 1)

nu(M − 1)
X⊤uXu and αu =

γ

2nu(M − 1)
. (6)

E.1 Proof of Proposition 3.2

The proof of Proposition 3.2 is detailed below.

Proof. For ease of notation, we will denote hcm the c-th entry of hm(x). Using the fact that each hm(x) is in the
simplex ∆C , we have that

0 ≤ sT (x) =
1

M(M − 1)

∑
m̸=k

hm(x)⊤hk(x) =
1

M(M − 1)

∑
m ̸=k

C∑
c=1

hcm hck︸︷︷︸
≤1

≤ 1

M(M − 1)

∑
m̸=k

C∑
c=1

hcm = 1.

E.2 Stationary points of L are solutions of a linear problem

In this section, we show that solving (3) amounts to solving the following linear problem in W(
Λ +

X⊤ℓ Xℓ

nℓ

)
W +

γ

nu(M − 1)
X⊤uXuW

(
U[M ] − IM

)
=

X⊤ℓ Y

nℓ
, (7)

where Y ∈ Rnℓ×M is the matrix with the vector yℓ repeated M times as columns and Λ ∈ RM×M is a diagonal
matrix with entries λm. Moreover, denoting ωm the columns of W, (7) is equivalent to

∀m ∈ J1,MK,
(
λmId +

X⊤ℓ Xℓ

nℓ

)
ωm =

X⊤ℓ yℓ

nℓ
− γ

nu(M − 1)
X⊤uXu

M∑
k=1|k ̸=m

ωk. (8)

The proof is detailed below.

Proof. We first recall that stationary points of L verify the Euler equation

∇L(W ) = 0. (9)

To compute ∇L : Rd×M → Rd×M , we will rewrite the loss function L using the Frobenius inner product, that is the
usual inner product on matrix spaces. We will use this formulation to write its Taylor expansion of order 1 and identify
∇L. Using the formulation of (P) and the notations introduced in (6), we have:

L(W) =
1

M

M∑
m=1

1

nℓ

nℓ∑
i=1

(
yi − ω⊤mxi

)2
+

1

M

M∑
m=1

λm∥ωm∥22 +
2αu

M

∑
m ̸=k

nℓ+nu∑
i=nℓ+1

w⊤k xiw
⊤
ℓ xi

=
1

nℓM

M∑
m=1

∥yℓ −Xℓωm∥22 +
1

M

M∑
m=1

λm∥ωm∥22 +
2αu

M

∑
m ̸=k

(Xuwm)
⊤
(Xuwk)

=
1

nℓM

M∑
m=1

(yℓ −Xℓωm)
⊤
(yℓ −Xℓωm∥) +

1

M

M∑
m=1

(√
λmωm

)⊤ (√
λmωm

)
+

2αu

M

M∑
m=1

M∑
k=1

(Xuwm)
⊤
(Xuwk)− 2αu

M∑
m=1

(Xuwm)
⊤
(Xuwm)

=
1

nℓM
∥Y −XℓW∥2F +

1

M
∥Λ1/2W∥2F +

2αu

M
1
⊤
M (XuW)

⊤
(XuW)1M −

2αu

M
∥XuW∥2F,
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where Y ∈ Rnℓ×M is the matrix with the vector yℓ repeated M times as columns and Λ ∈ RM×M is a diagonal
matrix with entries λm. For the last equality, we used the fact that for any matrices A,B ∈ Rd×M with columns
A·,m,B·,m ∈ Rd, the following property of the Frobenius inner product holds:

⟨A,B⟩F = Tr(A⊤B) =

M∑
m=1

d∑
k=1

AkmBkm =

M∑
m=1

A⊤·,mB·,m. (10)

Then, we write the first order Taylor expansion L near W by considering a small displacement H ∈ Rd×M and obtain
that

L(W +H) =
1

nℓM
∥Y −Xℓ (W +H)∥2F +

1

M
∥Λ1/2(W +H)∥2F +

2αu

M
1
⊤
M (Xu (W +H))

⊤
(Xu (W +H))1M

− 2αu

M
∥Xu(W +H)∥2F

=
1

nℓM
∥Y −XℓW∥2F +

1

M
∥Λ1/2W∥2F +

2αu

M
1
⊤
M (XuW)

⊤
(XuW)1M

− 2αu

M
∥XuW∥2F − ⟨

2

nlM
(Y −XℓW) ,XℓH⟩F

+ ⟨ 2
M

Λ1/2W,Λ1/2H⟩F +
4αu

M
1
⊤
M (XuW)

⊤
(XuH)1M

− 4αu

M
⟨XuW,XuH⟩F

+
1

nℓM
∥XℓH∥2F +

1

M
∥Λ1/2H∥2F +

2αu

M
1
⊤
M (XuH)

⊤
(XuH)1M −

2αu

M
∥XuH∥2F︸ ︷︷ ︸

o(∥H∥F)

= L(W) +
2

M
⟨ΛW − 1

nℓ
X⊤ℓ (Y −XℓW)− 2αuX

⊤
uXuW,H⟩F

+
4αu

M
1
⊤
M (XuW)

⊤
(XuH)1M︸ ︷︷ ︸

d(H)

+o(∥H∥F). (11)

Moreover, we have that

d(H) = 1
⊤
M (XuW)

⊤
(XuH)1M =

M∑
m=1

M∑
k=1

W⊤
·,mX⊤uXuH·,k

=

M∑
k=1

(
X⊤uXu

M∑
m=1

W·,m

)⊤
H·,k

=

M∑
k=1

L⊤·,kH·,k

= ⟨L,H⟩F,

where L ∈ Rd×d is the matrix with the vector X⊤uXu

∑M
m=1 W·,m repeated d times as columns. Another way to

write columns of L is the following:

L·,m = X⊤uXu

M∑
k=1

W·,k = X⊤uXuW1M .

Hence, by introducing U[M ], the unit matrix of size M , we obtain:

L = X⊤uXuW1M1
⊤
M = X⊤uXuWU[M ].

It leads to:
d(H) = ⟨X⊤uXuWU[M ],H⟩F.
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By injecting d(H) into (11), we obtain that
L(W +H) = L(W)

+ ⟨ 2
M

(
ΛW − 1

nℓ
X⊤ℓ (Y −XℓW)− 2αuX

⊤
uXuW + 2αuX

⊤
uXuWU[M ]

)
︸ ︷︷ ︸

∇L(W)

,H⟩F

+ o(∥H∥F).
Finally, the gradient of L writes:

∇L(W) =
2

M

[(
Λ +

X⊤ℓ Xℓ

nℓ

)
W + 2αuX

⊤
uXuW

(
U[M ] − IM

)
− X⊤ℓ Y

nℓ

]
. (12)

By combining (9) and (12), recalling that αu = γ
2nu(M−1) , we deduce that any stationary point W is characterized by

the following linear problem:(
Λ +

X⊤ℓ Xℓ

nℓ

)
W +

γ

nu(M − 1)
X⊤uXuW

(
U[M ] − IM

)
=

X⊤ℓ Y

nℓ
.

Moreover, this matrix equality holds if and only if it holds at the column level. Hence, we have(
Λ +

X⊤ℓ Xℓ

nℓ

)
W +

γ

nu(M − 1)
X⊤uXuW

(
U[M ] − IM

)
=

X⊤ℓ Y

nℓ

⇐⇒ ∀m ∈ J1,MK,
(
λmId +

X⊤ℓ Xℓ

nℓ

)
ωm +

γ

nu(M − 1)
X⊤uXu

(
k∑

k=1

ωk − ωm

)
=

X⊤ℓ yℓ

nℓ

⇐⇒ ∀m ∈ J1,MK,
(
λmId +

X⊤ℓ Xℓ

nℓ

)
ωm =

X⊤ℓ yℓ

nℓ
− γ

nu(M − 1)
X⊤uXu

M∑
k=1|k ̸=m

ωk.

E.3 Proof of Proposition 3.3

We start by recalling the definition of coercivity.

Definition E.1. A bilinear form a : H ×H 7→ R, where H is a Hilbert space, is called coercive if there exists
γ > 0 such that:

∀x ∈ H, a(x,x) ≥ γ∥x∥2. (13)

Then, we prove the following technical lemmas.

Lemma E.2. (see Boyd and Vandenberghe, 2004, chap. 3, p. 74). Let E be a vector space. A function f : E→ R
is convex if and only if for all x ∈ dom(f) and all v ∈ E, the function g : R → R, t 7→ f(x + tv) is convex on
its domain {t ∈ R|x+ tv ∈ dom(f)}.

Remark E.1. By construction, dom(f) is a convex set if and only if all the dom(g) are convex sets.

Proof. The implication part is straightforward as composing by an affine function preserves convexity and that the
convexity of dom(f) induces the convexity of all the dom(g). We will now prove the converse. We assume that for
all x ∈ dom(f) and all v ∈ E, the function g : t 7→ f(x+ tv) is convex on its domain i.e. for all x ∈ dom(f), v ∈ E,
we have for all α ∈ [0, 1] and for all t, t′ ∈ dom(g):

g(αt+ (1− α)t′) ≤ αg(t) + (1− α)g(t′)
⇐⇒ f(x+ (αt+ (1− α)t′)v) ≤ αf(x+ tv) + (1− α)f(x+ t′v). (14)

Let θ ∈ [0, 1] and u,y ∈ dom(f). By assumption, all the dom(g) are convex sets, so dom(f) is a convex set. We
can apply (14) with x = u ∈ dom(f),v = y − u ∈ E, α = θ ∈ [0, 1], t = 0, t′ = 1. Indeed, x + tv = u ∈
dom(f),x+ t′v = y ∈ dom(f), ensuring that t, t′ ∈ dom(g). We obtain:

f(x+ (αt+ (1− α)t′)v) ≤ αf(x+ tv) + (1− α)f(x+ t′v)

⇐⇒ f(θu+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).
Hence, f is convex.
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Lemma E.3. For any positive semi-definite matrix S ∈ Rd×d with minimum and maximum eigenvalues
λmin, λmax respectively, we have:

∀ω ∈ Rd, λmin∥ω∥22 ≤ ω⊤Sω ≤ λmax∥ω∥22. (15)

Proof. Let S ∈ Rd×d be a positive semi-definite matrix. Let λmax = λ1 ≥ · · · ≥ λd = λmin ≥ 0 be the eigenvalues
sorted in decreasing order. The spectral theorem ensures the existence of U ∈ Rd×d orthogonal and D ∈ Rd×d

diagonal with entries Dii = λi such that:
S = U⊤DU.

Let ω ∈ Rd. We have:
ω⊤Sω = ω⊤U⊤DUω

= (Uω)
⊤
DUω

=

d∑
k=1

λk︸︷︷︸
≥0

(Uω)
2
k︸ ︷︷ ︸

≥0

.

Hence, we deduce:

λmin∥Uω∥22 = λmin

d∑
k=1

(Uω)
2
k ≤ ω⊤Sω ≤ λmax

d∑
k=1

(Uω)
2
k = λmax∥Uω∥22. (16)

Using the fact that U is orthogonal, we know that:
∥Uω∥22 = ω⊤U⊤U︸ ︷︷ ︸

=Id

ω = ω⊤ω = ∥ω∥22. (17)

Finally, we combine (16) and (17) to obtain the desired inequalities:
λmin∥ω∥22 ≤ ω⊤Sω ≤ λmax∥ω∥22.

Then, we show that the loss function in (P) can be reformulated as

L(W) =
1

M

M∑
m=1

[
1

nℓ
∥yℓ −Xℓωm∥22 + ω⊤m

(
λmId −

γ(M + 1)

nu(M − 1)
X⊤uXu

)
ωm

]

+
γ

2nuM(M − 1)

M∑
m=1

M∑
k=1

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk) .

(18)

Proof. We have that

L(W) =
1

M

M∑
m=1

1

nℓ

nℓ∑
i=1

(
yi − ω⊤mxi

)2
+

1

M

M∑
m=1

λm∥ωm∥22

+
γ

nuM(M − 1)

∑
m̸=k

nℓ+nu∑
i=nℓ+1

ω⊤mxiω
⊤
k xi

=
1

M

M∑
m=1

1

nℓ
∥yℓ −Xℓωm∥22 +

1

M

M∑
m=1

λmω⊤mωm

+
γ

nuM(M − 1)

∑
m̸=k

(Xuωm)
⊤
(Xuωk)

=
1

M

M∑
m=1

1

nℓ
∥yℓ −Xℓωm∥22 +

1

M

M∑
m=1

λmω⊤mωm

+
γ

nuM(M − 1)

∑
m̸=k

ω⊤mX⊤uXuωk. (19)
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Using the fact that ω⊤mX⊤uXuωk is a real number, it is equal to its transpose term. We deduce

ω⊤mX⊤uXuωk =
1

2

[
ω⊤mX⊤uXuωk + ω⊤k X

⊤
uXuωm

]
=

1

2

[
(ωm + ωk)

⊤
X⊤uXu (ωm + ωk)− ω⊤mX⊤uXuωm − ω⊤k X

⊤
uXuωk

]
.

Thus, by summing over {m ̸= k}, we obtain:∑
m ̸=k

ω⊤mX⊤uXuωk =
∑
m̸=k

1

2

[
(ωm + ωk)

⊤
X⊤uXu (ωm + ωk)− ω⊤mX⊤uXuωm − ω⊤k X

⊤
uXuωk

]

=
1

2

∑
m ̸=k

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk)− (M − 1)

M∑
m=1

ω⊤mX⊤uXuωm

=
1

2

∑
m,k

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk)

− 1

2

M∑
m=1

(2ωm)⊤X⊤uXu(2ωm)− (M − 1)

M∑
m=1

ω⊤mX⊤uXuωm

=
1

2

∑
m,k

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk)− (M + 1)

M∑
m=1

ω⊤mX⊤uXuωm.

We now inject this term in (19) and gather quadratic and cross terms to obtain

L(W) =
1

M

M∑
m=1

1

nℓ
∥yℓ −Xℓωm∥22 +

1

M

M∑
m=1

λmω⊤mωm

+
γ

nuM(M − 1)

1
2

∑
m,k

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk)− (M + 1)

M∑
m=1

ω⊤mX⊤uXuωm


=

1

M

M∑
m=1

1

nℓ
∥yℓ −Xℓωm∥22

+
1

M

M∑
m=1

ω⊤m

(
λmId −

γ(M + 1)

nu(M − 1)
X⊤uXu

)
ωm

+
γ

2nuM(M − 1)

M∑
m=1

M∑
k=1

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk) .

We now proceed to the proof of Proposition 3.3.

Proof. We assume that assumption A holds. Using the formulation of the loss in (18) and the quantities Su, αu

introduced in (6), we can decompose it as follows:

L(W) =
1

M

M∑
m=1

1

nℓ
∥yℓ −Xℓωm∥22︸ ︷︷ ︸
ℓ1(W)

+
1

M

M∑
m=1

ω⊤m (λmId − Su)ωm︸ ︷︷ ︸
ℓ2(W)

+
αu

M

M∑
m=1

M∑
k=1

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk)︸ ︷︷ ︸

ℓ3(W)

.

Continuity of L. The losses ℓ1, ℓ2 and ℓ3 are differentiable w.r.t W, leading to L being differentiable. Thus, L is
continuous on Rd×M .
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Strict Convexity of L. We will show that ℓ1, ℓ2, ℓ3 are convex and that, in addition, ℓ2 is strictly convex. This will
lead to the strict convexity of L on the convex set Rd×M .

- ∥·∥22 : Rd → R is convex as it is a norm function. For all m ∈ J1,MK, we define the affine function

am : Rd×M → Rd

W 7→ yℓ −Xℓωm.

As composing by an affine function preserves the convexity, we deduce that for all m ∈ J1,MK,

ℓm1 : Rd×M → R
W 7→ ∥yℓ −Xℓωm∥22.

is convex. By non-negative weighted summation, we obtain that ℓ1 : Rd×M → R is convex.

- For a given matrix P ∈ Rd×d, we define

∥·∥2P : Rd → R
ω 7→ ω⊤Pω.

Such a function is twice differentiable with Hessian P. Using the property of differentiable convex functions,
∥·∥2P is convex (respectively strictly convex) if and only if P is positive semi-definite (respectively positive
definite). Using Assumption (A), we know that for allm ∈ J1,MK, ∥·∥2λmId−Su

is strictly convex. As before,
for all m ∈ J1,MK, we can define the linear function

em : Rd×M → Rd

W 7→ ωm.

As composing by a linear function preserves the strict convexity (provided that this linear function is not
identically equal to zero), we deduce that for all m ∈ J1,MK,

ℓm2 : Rd×M → R
W 7→ ω⊤m (λmId − Su)ωm.

is strictly convex. By non-negative weighted summation of strictly convex functions, we obtain that
ℓ2 : Rd×M → R is strictly convex.

- Let W,H ∈ Rd×M . We consider

f : R→ R
t 7→ ℓ3(W + tH).

We will show that f is convex. Following Lemma E.2, as W and H are taken arbitrary in Rd×M , it will
induce the convexity of ℓ3. Let t ∈ R. We have:

f(t) = ℓ3(W + tH)

=
αu

M

M∑
m=1

M∑
k=1

(ωm + ωk + t(hm + hk))
⊤
X⊤uXu (ωm + ωk + t(hm + hk))

= t2 × αu

M

M∑
m=1

M∑
k=1

(hm + hk)
⊤
X⊤uXu (hm + hk)

+ 2t× αu

M

M∑
m=1

M∑
k=1

(ωm + ωk)
⊤
X⊤uXu (hm + hk)

+
αu

M

M∑
m=1

M∑
k=1

(ωm + ωk)
⊤
X⊤uXu (ωm + ωk)

= at2 + bt+ c.
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where 
a = αu

M

∑M
m=1

∑M
k=1 (hm + hk)

⊤
X⊤uXu (hm + hk)

b = 2αu

M

∑M
m=1

∑M
k=1 (ωm + ωk)

⊤
X⊤uXu (hm + hk)

c = αu

M

∑M
m=1

∑M
k=1 (ωm + ωk)

⊤
X⊤uXu (ωm + ωk) .

We see that f is a second-order polynomial function of the real line. It is a convex function if and only if
a ≥ 0. It should be noted that X⊤uXu is symmetric positive semi-definite by construction. Indeed, we have:

∀ω ∈ Rd,ω⊤X⊤uXuω = ∥Xuω∥22 ≥ 0.

Hence, we deduce:

a =

M∑
m=1

M∑
k=1

(hm + hk)
⊤
X⊤uXu (hm + hk)︸ ︷︷ ︸
≥0

≥ 0.

We have shown that f is a convex function of the real line. As W and H were taken arbitrarily, we obtain
that ℓ3 : Rd×M → R is convex.

By summation of convex functions and a strictly convex function, we finally obtain that L : Rd×M → R is
strictly convex.

Coercivity of L. We will show that under assumptions A, L is lower-bounded by a coercive function, implying the
coercivity of L i.e

lim
∥W∥F→+∞

L(W) = +∞.

where ∥·∥F is the norm associated to the Frobenius inner product

⟨·, ·⟩F : Rd×M × Rd×M → R
(A,B) 7→ Tr(A⊤B).

- The function ℓ1 is non-negative as the sum of non-negative functions.

- By construction, X⊤uXu is symmetric positive semi-definite. Hence, we have:

∀m, k ∈ J1,MK, (ωm + ωk)
⊤
X⊤uXu (ωm + ωk) ≥ 0.

It leads to ℓ3 being non-negative as the sum of non-negative functions.

- By lower bounding, we obtain:

L(W) = ℓ1(W)︸ ︷︷ ︸
≥0

+ℓ2(W) + ℓ3(W)︸ ︷︷ ︸
≥0

≥ ℓ2(W) =
1

M

M∑
m=1

ω⊤m (λmId − Su)ωm. (20)

Under Assumption A, we know that for all m ∈ J1,MK, λmId − Su is positive definite. It ensures that
λmin(λmId − Su), the minimum eigenvalue of λmId − Su, is positive. Hence, we have:

ℓ2(W) =
1

M

M∑
m=1

ω⊤m (λmId − Su)ωm︸ ︷︷ ︸
≥λmin(λmId−Su)ω⊤

mωm

(from Lemma E.3)

≥ 1

M

M∑
m=1

λmin(λmId − Su)︸ ︷︷ ︸
>0

ω⊤mωm︸ ︷︷ ︸
≥0

≥ 1

M
min

m∈J1,MK
{λmin(λmId − Su)}︸ ︷︷ ︸

>0

M∑
m=1

ω⊤mωm

≥ γ
M∑

m=1

ω⊤mωm where γ =
1

M
min

m∈J1,MK
{λmin(λmId − Su)} > 0.
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As we know that the columns of W ∈ Rd×M are the ωm ∈ Rd, we can use (10) and have that
M∑

m=1

ω⊤mωm = ⟨W,W⟩F.

By using the previous lower bound on ℓ2 in (20), we obtain:
L(W) ≥ γ⟨W,W⟩F := a(W,W) where a(A,B) = γ⟨A,B⟩F.

Following Definition E.1, it is straightforward that a is a coercive bilinear form on the Hilbert Rd×M :
a(W,W) = γ⟨W,W⟩F = γ∥W∥2F → +∞.

Hence by lower bounding, we obtain:
lim

∥W∥F→+∞
L(W) = +∞.

We have proved that under Assumption A, the loss function L is strictly convex and coercive w.r.t W.

Convergence As a continuous, strictly convex, and coercive function on the convex Rd×M , L admits a unique
global minimizer. As L is differentiable, this minimizer is a stationary point of L, i.e., must verify the Euler equation
(3). Hence, (P) converges towards the unique stationary point of L.

E.4 Proof of Theorem 3.4

The proof of Theorem 3.4 is detailed below.

Proof. Let W̃ be a stationary point of L, i.e., W̃ is solution of (3). From Appendix E.2, the columns ω̃m of W̃, verify
(8) and we have for all m ∈ J1,MK:(

λmId +
X⊤ℓ Xℓ

nℓ

)
ω̃m =

X⊤ℓ yℓ

nℓ
− γ

nu(M − 1)
X⊤uXu

M∑
k=1|k ̸=m

ω̃k

⇐⇒ γ

nu(M − 1)
X⊤uXu

M∑
k=1|k ̸=m

ω̃k =
X⊤ℓ yℓ

nℓ
−
(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

⇐⇒ γ

nuM(M − 1)
X⊤uXu

M∑
k=1|k ̸=m

ω̃k =
1

M

[
X⊤ℓ yℓ

nℓ
−
(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

]
.

By taking the left inner product with ω̃m and summing over all m ∈ J1,MK, we obtain:

γ

nuM(M − 1)

M∑
m=1

ω̃mX⊤uXu

M∑
k=1|k ̸=m

ω̃k︸ ︷︷ ︸
(LHS)

=
1

M

M∑
m=1

ω̃⊤m

[
X⊤ℓ yℓ

nℓ
−
(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

]
︸ ︷︷ ︸

(RHS)

.

The left-hand side (LHS) term can be rewritten as

(LHS) =
γ

nuM(M − 1)

M∑
m=1

ω̃mX⊤uXu

M∑
k=1|k ̸=m

ω̃k

=
1

nuM(M − 1)

M∑
m=1

M∑
k=1|k ̸=m

ω̃mX⊤uXuω̃k

=
γ

nuM(M − 1)

∑
m̸=k

ω̃mX⊤uXuω̃k

=
γ

nuM(M − 1)

∑
m̸=k

nℓ+nu∑
i=nℓ+1

w⊤mxiw
⊤
k xi

= −γℓdiv(W̃,Xu),
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where ℓdiv is the diversity introduced in (4). Moreover, using the decomposition of the Euclidean norm, we have:

∥yℓ −Xℓω̃m∥22 = y⊤ℓ yℓ − 2y⊤ℓ Xℓω̃m + ω̃⊤mX⊤ℓ Xℓω̃m

⇐⇒ y⊤ℓ Xℓω̃m =
1

2

[
y⊤ℓ yℓ + ω̃⊤mX⊤ℓ Xℓω̃m − ∥yℓ −Xℓω̃m∥22

]
.

As we are in binary classification, we know that each entry of yℓ is in {−1,+1}. Thus, we have:

y⊤ℓ yℓ = ∥yℓ∥22 =

nℓ∑
i=1

|yℓ,i|2 = nℓ.

We inject the new formula for y⊤ℓ Xℓω̃m in the right-hand side (RHS) part of (E.4) and obtain:

(RHS) =
1

M

M∑
m=1

ω̃⊤m

[
X⊤ℓ yℓ

nℓ
−
(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

]

=
1

M

[
1

nl

M∑
m=1

y⊤ℓ Xℓω̃m −
M∑

m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

]

=
1

M

(
1

2nl

M∑
m=1

[
nℓ + ω̃⊤mX⊤ℓ Xℓω̃m − ∥yℓ −Xℓω̃m∥22

])

− 1

M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

=
1

M

(
M

2
− 1

2nℓ

M∑
m=1

∥yℓ −Xℓω̃m∥22

)

+
1

M

(
M∑

m=1

ω̃⊤m
X⊤ℓ Xℓ

2nℓ
ω̃m − ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

)

=
1

2

[
1− 1

nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 −
2

M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

2nℓ

)
ω̃m

]

=
1

2

[
1− 1

nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 −
1

M

M∑
m=1

ω̃⊤m

(
2λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

]

=
1

2
− 1

2nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 −
1

2M

M∑
m=1

λmω̃⊤mω̃m

− 1

2M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

=
1

2
− 1

2nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 −
1

2M

M∑
m=1

λm∥ω̃m∥22

− 1

2M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m.

We finally obtain from (LHS) = (RHS), after multiplying by −1, that

γℓdiv(W̃,Xu) =
1

2nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 +
1

2M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m +

1

2M

M∑
m=1

λm∥ω̃m∥22 −
1

2
.

Under the hypothesis that 1
M

∑M
m=1 λm∥ω̃m∥22 ≥ 1, we have:

1

2M

M∑
m=1

λm∥ω̃m∥22 −
1

2
=

1

2

[
1

M

M∑
m=1

λm∥ω̃m∥22 − 1

]
≥ 0.
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Taking this fact into account, we obtain:

γℓdiv(W̃,Xu) =
1

2nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 +
1

2M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m +

1

2M

M∑
m=1

λm∥ω̃m∥22 −
1

2︸ ︷︷ ︸
≥0

≥ 1

2nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22 +
1

2M

M∑
m=1

ω̃⊤m

(
λmId +

X⊤ℓ Xℓ

nℓ

)
ω̃m.

E.5 Proof of Corollary 3.5

The proof of Corollary 3.5 is detailed below.

Proof. By hypothesis, 1
M

∑M
m=1 λm∥ω̃m∥22 ≥ 1, thus Theorem 3.4 holds. Using the fact that all λm are equal to some

λ, it leads to:

γℓdiv(W̃,Xu) ≥
1

2nℓM

M∑
m=1

∥yℓ −Xℓω̃m∥22︸ ︷︷ ︸
≥0

+
1

2M

M∑
m=1

ω̃⊤m

(
λId +

X⊤ℓ Xℓ

nℓ

)
ω̃m

≥ 1

2M

(
λ

M∑
m=1

∥ω̃m∥22 +
1

nℓ

M∑
m=1

ω̃⊤mX⊤ℓ Xℓω̃m

)

≥ 1

2M

(
λ+

1

nℓ
λmin

(
X⊤ℓ Xℓ

)) M∑
m=1

∥ω̃m∥22 (from Lemma E.3)

=
1

2M

(
λ+

1

nℓ
λmin

(
X⊤ℓ Xℓ

))
∥W̃∥2F. (from (10))
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